

1

Abstract—In this paper, we introduce a Fault Tolerance Spider-Net

Zone (FTSNZ) routing protocol that combines spider-net zone routing

and consensus-based fault tolerance to provide high performance,

energy-efficiency and reliable communications in MSWSN (Mobile

Sinks Wireless Sensor Networks). MSWSN consists of a large number

of sensors with several mobile monitoring terminals, called mobile

sinks. This algorithm utilizes a spatio-temporal topology that we call

‘Spider-Net’, which is inspired by the way that a spider hunts using its

own web. The spider uses spider catching silk, probably in some form

of a simple sheet web, to capture their prey. When spider makes its

own web, it will make radii lines of the web first, and then makes the

circular threads around the web until whole web is finished. We use

this phenomenon to build our network topology and routing for

MSWSN. The sinks similar as spiders can have mobile capability and

access data from network. For concerning the data reliability of

spider-net, we provide consensus-based fault tolerance to avoid data

failure in network. Through our simulation study, we show that

FTSNZ scheme achieves less energy consumption, less average delay

and better packet success ratio than other related protocols.

Index Terms—Mobile sink, wireless sensor networks, spider-net

zone routing, network topology, consensus-based fault tolerance, data

dissemination, network reliability, performance evaluation.

I. INTRODUCTION

Spiders are one of the most technical predators you can

observe in the natural world. A spider normally will build a web

as a trap; this web is made of spider silk, a thin, strong strand

extruded by the spider. The silk composes a spider web which

can be used to wrap prey and for many other applications.

Consider how the spider builds the spider-net; it will make radii

lines of the web first. After finishing the radii lines of the web,

the spider start to make the circular threads around the web to

build the whole web. Wireless sensor networks (WSN) consist

of a large number of sensors that have a variety of applications

such as battlefield surveillance, environment monitoring, and

target tracking. WSN normally use monitoring terminals called

Dr. Shih-Hao Chang, Research Fellow, Intel-NTU Connected Context

Computing Center, National Taiwan University, Room F, 7F, Barry Lam Hall,

No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, Email:

sh.chang@ieee.org.
Prof. Ping-Tsai Chung, Department of Computer Science, Associate

Professor and Chair, Long Island University, 1 University Plaza, Brooklyn,

New York 11201, USA, E-mail: pchung@liu.edu.

sinks, these sinks could have mobile capability, similar as the

spiders that catch the sources (prey) from the network.

Mobile sinks wireless sensor networks (MSWSN) consist of

a large number of sensors with several mobile monitoring

terminals, called mobile sinks. Example of a mobile sink is a

smart phone or PDA (Personal Digital Assistant) device carried

by users to gather sensor readings, process and aggregate

sensed data from local environment. This promising solution

would enhance performance, extend network lifetime and

reduce consumed energy and latency by routing data to a

nearby mobile sink. However, it also introduces many

problems and research challenges such as the high

communication overhead for updating the dynamic routing

paths to connect to mobile sinks, and the recovery of lost data

because of sink mobility. In this paper, we introduce a new

routing topology for data dissemination in a heterogeneous

MSWSN. This algorithm is called Fault Tolerance Spider-Net

Zone (FTSNZ) routing protocol.

We use the concept of spider-net zone routing protocol [1],

which provide an energy efficient and low latency routing

protocol for multiple events propagation in wireless sensor

networks with mobile sinks. We assumed that these mobile

sinks can notify their neighboring cluster heads about their

current location, and then these neighboring cluster heads will

relay the data to mobile sinks. These neighboring cluster heads,

which called moles, can provide current mobile sinks locations

and maintain routing paths according to their movements.

The major contributions of this paper are listed below. First,

we use spider-net topology proposed in [1] to provide high

performance routing through a spider-net zone sensor network.

Second, we use consensus-based solutions to provide reliable

network communication. Our algorithm adapts the magnetic

query dissemination and extends it to provide a spider-net zone

topology to improve network efficiency. Instead of changing

the whole routing path when the mobile sink moves, we

propose a partial update of the routing path based upon the new

location of the mobile sink. Third, we provide a fault tolerance

mechanism to increase the network reliability since sensor

networks are prone to failure due to hardware, software, and

environment issues. The main idea of this fault tolerance

A Fault Tolerance Spider-Net Zone Routing Protocol for

Mobile Sinks Wireless Sensor Networks

Shih-Hao Chang, IEEE Member, Intel-NTU Connected Context Computing Center, National

Taiwan University, Taiwan, sh.chang@ieee.org

Ping-Tsai Chung, IEEE Senior Member, Dept. of Computer Science, Long Island University,

Brooklyn, New York, USA, pchung@liu.edu

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), April Edition, 2013
Volume 3, Issue 4

mailto:pchung@liu.edu
mailto:sh.chang@ieee.org
mailto:ptchung@ieee.org

2

mechanism is to ensure that faulty cluster heads do not share in

data dissemination process, thus guarantee that mobile sinks

gather correct data from proper cluster heads only.

FTSNZ is a new routing algorithm utilize spider-net zone

routing to achieve high performance, energy efficiency and

reliability in MSWSN, our algorithm adapts of QoS pattern,

and data centric dissemination. Our design criteria are

described as follows:

 High performance: Routing mechanisms can provide

high performance data communication with extended

networks lifetime by application requirements in terms

and network conditions.

 Energy-efficiency: Given data update demands, the

protocol should be able to satisfy them with lower

energy dissipation and ultimately extend the network

lifetime.

 Reliable communications: The protocol should be

designed to achieve high data reliability in the

presence of network dynamics.

The rest of the paper is organized as follows. In Section II,

background and related works are briefly described. In Section

III, we present the Fault Tolerance Spider-Net Zone (FTSNZ)

routing algorithm, we first discuss the general assumptions, we

then organize the randomly deployed sensor network to form a

spider-net topology mechanism and present our FTSNZ data

dissemination mechanisms. In Section IV, we discuss the

network management of the Fault Tolerance Spider-Net Zone

(FTSNZ) routing protocol. We first present data collection and

redirect tunnel for supporting mobile sinks random movement.

We then discuss the Quality of Service (QoS) pattern control to

provide efficient routing, better guaranteed scheduling. Finally,

we conclusion and further work are explored in Section V.

II. BACKGROUND & RELATED WORKS

In this section, we provide an overview of a selection of

protocols and mechanisms that have been developed to

improve the performance of MSWSN. We will focus on routing

protocols; path planning, and reliable data transfer

mechanisms. To the best of our knowledge so far, only limited

research has tried to address high performance issues in

MSWSN. The Cluster-Based Routing Protocol (CBRP) is a

well-known WSN protocol. The main strategy of the CBRP is

to use a clustering approach to aggregate data and minimize

on-demand route discovery traffic, reduce travel time and

latency [1]. Cluster-heads normally have more power strength

than normal sensor node in WSN.

Zone Routing Protocol (ZRP) [2] is a hybrid routing scheme

that contains both reactive and proactive components. ZRP uses

proactive Intra Zone Routing Protocol (IARP) to maintain

routing information for nodes that are within the routing zone

of the node that can reduce the traffic overhead in the network.

ZRP uses reactive Inter Zone Routing Protocol (IERP) that

offers enhanced routing discovery and zone routing services

based on local connectivity monitored by IARP. Fisheye Zone

Routing Protocol (FZRP) [3] is an extension of ZRP adopting

the concept of Fisheye State Routing (FSR) [9]. The idea of

FZRP uses the ZRP concept to update routing information in its

defined basic zone and to add a reduction factor to reduce the

frequency of transmission updates in the extend zone.

However, they do not concern the traffic overhead and

reliability issues for link failure in WSN.

A number of research efforts which focus on routing

protocols in MSWSN aim at achieving power efficiency, load

balancing and extended system lifetime in hostile

environments. The TTDD [4] protocol builds a grid structure

and divides the network into cells with several dissemination

nodes. The dissemination nodes are responsible for relaying the

query and data to and from the proper sources. ODDD [5] is

another protocol that improves the TTDD [4] that is more

suitable for dynamic large wireless sensor networks. In ODDD,

a source does not proactively construct a virtual grid. Instead, a

source sends a data announce message along the X-axis only.

Therefore, ODDD reduces the amount of communication

overhead for creating and maintaining virtual grid structures

over the entire network. However, due to ODDD sends along

the X-axis only, therefore it may take grid node fail risk that

lead to network failure. In this routing mechanism, there is no

fault tolerance algorithm for any grid node fail on X-axis.

SAFE [6] and Directed diffusion [7] utilize data

dissemination path sharing among multiple data sinks and

attempt to minimize message exchanges to achieve energy

saving over the network. They flood "query" messages to the

entire network and find out the source node and junction nodes

that help to setup the dissemination path. Flooding is

geographically limited to forward the query to nodes along the

direction of the source. In contrast to directed diffusion, SAFE

uses geographically limited flooding to find the gate connecting

itself to the tree. Directed diffusion and SAFE are most

effective in small-to-medium size sensor networks. In a very

large network, the initial sensor flooding may consume too

much energy. Due to their junction node’s algorithm, it will be

resulted in long-term waiting for the source information when

the path is broken or congested. Our approach aims at providing

energy efficiency, and high performance data dissemination

for MSWSN.

III. FAULT TOLERANCE SPIDER-NET ZONE (FTSNZ)

ROUTING ALGORITHM

Fault Tolerance Spider-Net Zone routing protocol (FTSNZ)

is a hierarchical hybrid scheme for query based data

dissemination for mobile sinks in WSN. In this section, we first

give the assumptions and environment requirements. Then we

explain the FTSNZ in the following four subsections: In the

section A, we provide a set of general assumptions of the

network model for FTSNZ. We then discuss the construction

spider-net topology mechanism in section B, the spider-net data

dissemination mechanism in section C.

3

A. General Assumptions

We consider the specific case where there is an inherent

pattern to the sink’s movement through the sensor field with

allowance for some variance. The network model for FTSNZ

makes the following general assumptions:

 The sensor nodes and cluster-heads are knowledgeable

about their neighbor nodes and location aware of their

geographic locations. Several algorithms exist to estimate

the locations of the individual nodes that provide route

messages towards geographic locations.

 The sensor nodes and cluster heads are regularly

deployed over the entire sensing region. The sensor nodes

and cluster heads are heterogeneous with constrained

energy resource. Their wireless communication channels

are bidirectional.

 After deployment these sensor nodes and cluster heads

will all remain stationary at their initial in a flat

two-dimensional space.

 Each mobile sink only broadcasts the hello message to the

neighboring cluster-heads and concentrates on continue

listening to reply messages around it.

 The sensor nodes will aggregate data or event messages

and send across to vicinity cluster-heads then forward to

mobile sinks. That is to say, sources and mobile sinks are

typically much further apart than a single radio radius

(multi-hop).

B. Spider-Net Zone Topology Mechanism

We use the spider-net topology mechanism [1] to form the

dynamic network in randomly deployed sensor nodes. The idea

of the spider-net zone [1] is based on assumption which all

nodes in the network can aware of their own coordinates

location, and each node also can obtain neighbor nodes

coordinate information by periodically exchange coordinates

information. The key of this construction is any GCH in the

network can broadcast a spider-net zone construction message

to the center area of the network by directional antenna. This

construction message will be forwarded to it specific direction

1-hop away neighboring nodes inside range R, which has angle

 . The nodes receive this message will check its location

information whether it is a center node. If it is the center node, it

will broadcast this construction message to its 1-hop away

node. Otherwise, it will continuously forward this construction

message to its next neighboring nodes with same angle .

To form the CCHs in the spider net, each cluster-head can

use peer-to-peer technology which provides advertisement,

listening and publication functions. Each cluster head will

broadcast advertisements and listen to neighboring

cluster-heads before its control timer is expired. The

advertisement and listening functions for each cluster-head

becomes aware of its coverage level to neighboring nodes. The

timer function in each cluster-head closely monitors the status

of neighboring cluster-heads and values can be set to the

communication interval of the query message. This coverage

level is to decide the cluster head role in the spider-net. CCH

 can be defining as a cluster-head that covers three or more

cluster-heads in one web.

Core Cluster Head (CCH) Election: When initiating a

randomly deployed sensor network, each cluster head will

broadcast its advertisement and listen to neighboring cluster

heads’ responses. Therefore, it is likely to have multiple CCHs

or non-CCHs in a region.

(1) For multiple CCHs in a region: These CCHs can be aware

themselves when the timer of advertisement and listening is

expired. If there are multiple CCHs in a region, each candidate

cluster head will announce it to be the CCH and will also

receive the announcement messages of other CCHs. This

announcement message will include their ID numbers. We

assume that every sensor node has an ID number. Therefore,

when the candidate cluster head receives other candidate

cluster heads with ID larger than its own, it will stop sending

announcement messages and change its state to become a

normal cluster head. Finally, there will be only one CCH in the

spider-net.

For non-CCHs in a region: The announcement message

approach also applies to the situation of non-CCHs in a region.

When the timer has expired, if no cluster head has received any

announcement in this region, then the cluster heads covered by

two cluster heads can be the candidate CCHs. Therefore, if the

candidate cluster head receives other candidate cluster head IDs

bigger than its own, it will stop sending announcement

messages and change its state to become a normal cluster head.

(2) Gateway Cluster Head (GCH) Election: After CCHs for

every spider-net have been elected; CCH will broadcast

announcement messages within α hop distance to notify the

border cluster heads. This “α” hop distance can be decided by

the designer that defines the size of the spider-net. In this

situation, those border cluster heads receiving two or more

different CCH ID announcement messages are the GCHs. After

the GCHs have been decided, the CCH can manage all the

routing information to the GCHs in the spider-net. At this stage,

the shape of the spider-net is now similar to the radii lines of a

web built by a genuine spider, as shown in Fig. 1 (a). GCHs are

mainly for the maintenance of link changes in two different

webs. If the topologies between two webs go down or up, a

GCH will inform the CCHs in these two regions.

(3) Intermediate Cluster Head (ICH) Formation: After the GCH

has been elected, the CCH will broadcast to its 1-hop away

cluster heads. These cluster heads are similar to the first ring

that circulates around the CCH, which we call the CCH group.

This CCH group will start to organize the network similar to the

chain protocol [11], which uses the location information to

greedy broadcast to its vicinity neighbors to form the network.

Therefore, the cluster heads on the CCH to GCH paths that also

receive location based greedy broadcast will become the ICHs

4

in the network. This network formation is like the spider

building the circular threads on its web until it reaches the

GCHs. Each ICH will have routing information for all the

ICHs, CCH and terminal GCH on the path information.

Therefore, this spider-net can divide the network into

different zones.

CCH Group Functionality: the central bold circle is the CCH

group. This bold circle reduces the distances to the destination.

The cluster heads belonging to this group will share routing

information; therefore the CCH group can provide efficient

data dissemination in the network. The CCH group also

provides many benefits in terms of maintenance and reliable

communication. When an ICH sends a ‘hello’ packet to its

neighbor ICH, it starts a hold timer, which is the amount of time

that a router treats a neighbor as reachable. If a ‘hello’ packet is

not received within the hold timer, the hold timer expires and

this cluster head will inform the CCH group to maintain the

route. Due to the fact that it only monitors neighboring nodes,

the energy cost in maintenance overhead is small. When an

event occurs in the spider-net, the event message will be sent to

the CCH group. The CCH group can know the event source ID

and event message. When the query message arrives, the CCH

group can respond with source information to the mobile sink,

and then the sink can decide to query or discard. In addition,

due to the shape of the spider-net, it can provide multi-route

paths in the case when the first routing path failed. After the

spider-net zone topology has been initialised, each spider-net

zone is similar to a big triangle and each cluster head will know

its role in this network.

C. Spider-Net Data Dissemination Mechanism

In this section, we introduce a simple routing path setup and

data dissemination mechanism for spider-nets in WSN. After

the network topology has been initialized, the routing paths will

be set up before the sinks reach the spider-net network. In our

network topology, each small square of the spider-net is a

trapezium shape, similar to the square shapes found in TTDD

[6]. When an event happens in the spider-net, the response is

similar to that of TTDD, with transmission of the event

message only to the vicinity ICHs. This event message will use

the routing path from the ICHs to the CCH group. Then the

cluster heads in the CCH group belonging to the event message

zone will save this event message and keep it memory resident

until the sinks hello message arrives. These sinks can broadcast

hello messages to α-hop-away cluster heads around the

network. These vicinity cluster heads we call mole nodes. The

mole nodes will forward the hello message through the ICHs to

the CCH group and redirect the event message backflow to the

sinks. For providing reliable communication in the Fault

tolerant spider-net zone routing protocol (FTSNZ), we provide

Quality of Service (QoS) patterns to adapt the data

dissemination. Then we introduce our routing mechanisms

in FTSNZ.

IV. FAULT TOLERANT SPIDER-NET ZONE (FTSNZ)

ROUTING MANAGEMENT

A. Quality of Service Pattern

We apply a pattern framework for analysis of QoS time from

[10] to our work. Due to this framework being focused on

spatial-temporal QoS pattern analysis, the statistical model can

be set up for every cluster head to analyse regional network

conditions. This provides more practical measurement of QoS

that has benefits for evaluating network conditions in dynamic

network topologies. In intra-domain topologies, we can use the

trafficnetQ _ , to measure network traffic on the routing paths in

our network. In inter-domain topologies, we can use the

delayendQ _ , to measure end-to-end delay on the routing paths in

our network. These statistical results can apply thresholds to

decide the network link quality. The time series data

delayendQ _ describes the QoS of end-to-end delay in

connection iC for some interval .

)(
21_ nCCCdelayend QQQQ (1)

B. Intra-Spider-Net Zone Routing Algorithm & Maintenance

As we mentioned in the description of ICH formation, the

CCH group will start to organize the network similarly to the

chain protocol [12]. They will use greedy broadcast

announcement messages. These announcement messages work

like the spider building the radial lines of the web, which will

transverse through every ICH in the network until arriving at

the GCHs. After ICHs and GCHs received these announcement

messages, they will add the routing paths into the aggregation

messages, from the transverse previous cluster heads and next

cluster heads. In addition, as we discussed above, the CCH will

broadcast announcement messages within α hop distance to

notify the border cluster heads. This longitudinal routing will

provide every ICH on this path with the routing information to

its CCH and GCH. These announcement messages will allow

the construction of a small routing table in each ICH, which

records the neighboring cluster head information.

The announcement messages include a time tag. Therefore,

both the CCH group and GCHs can summarize total

transmission time and select the best routing paths to each other

as shown as Fig. 1. After the best routing paths have been

selected, the GCHs will use the best routing path to return

registration messages to the CCH. Each registration message

includes the gateway cluster head’s (GCH’s) ID, transmission

time and routing path information. Once the registration

packets have been received by the CCH, intra-region routing

paths are set up.

5

Figure 1. Intra-Spider-Net Zone Diagram.

We now consider how the event message transmits to the

sinks. When a sensor in the network sends an event message to

the vicinity GCH (or ICH), GCH use the greedy forwarding

routing protocol to forward event messages to the CCH group.

This event message will be saved in the CCH group until the

sink’s hello message arrives. When the sink sends a hello

message, it will only be broadcast to α-hop vicinity mole nodes.

These mole nodes will forward the hello message through

middle ICHs to the CCH group. When the CCH group receives

this message, they will check any aggregated event message

that can send to sinks nodes. If the events over the defined

threshold, these event messages can be send back to the sink

using the same routing path. In addition, the event message also

includes a time tag. If the time tag has expired, the CCH group

will remove this event from its memory.

For the routing update and maintenance problem, we use

QoS patterns and control packets to provide more practical

measurement network conditions to find better paths. These

QoS patterns (patternQ) have defined levels in each cluster

head. The QoS patterns can provide consequences of

conducting the next hop routing path. When CCHs receive this

packet, they maintain or update routing paths in the region in

accordance with the QoS levels of this path. This QoS pattern

composes different gravity (Gty) of QoS levels of this routing

path. These gravity parameters are used to provide

self-adjustment and optimize priority tasks in each cluster head.

In our algorithm, we list the QoS end-to-end delay’s gravity

(GtyQ), Power remains’ gravity (GtyP) and Network lifetime’s

gravity (GtyN).

)(_ GtylifetimeGtyremainGtydelayendpattern NNPPQQQ
 (2)

 , where remainP is the remaining power, and lifetimeN is the

network lifetime.

If the QoS pattern is available, we apply the same algorithm

from [11] which provide routing path with the probability

pathP to CCH as follows.

 1,
)(

)(

i
dNj pattern

pattern

path
Q

Q
P , (3)

where
i

dN is the set of neighbours of i over which a path to d

is known, and β is a parameter value which can lower the

exploratory behaviour of the proactive control packets. This

proactive control packet can provide an adaptable routing path

by evaluating the QoS pattern value in this path. In this way,

routing failures can be solved when the single path suffers a

failure.

C. Inter-Spider-Net Zone Routing Algorithm & Management

In this section, we discuss how to setup the routing paths

between different regions. As we mentioned above, after a

GCHs receives the announcement message from the CCH, the

GCH will return the registration message to the CCH. When the

CCH receives this registration message during the long waiting

timer (LWT), then both CCH and GCH will have the routing

information to each other. Otherwise, after the LWT expires

and the CCH still does not receive a registration message from

the GCH, the GCH will not belong to this CCH. Once the

registration message return to the CCH, inter spider-net zone

routing algorithm is initialised.

The query message includes a query ID, query item and

Time-To-Live (TTL) value. When the CCH group receives a

query message, it will check these two contexts. If these two

parameters are not in this web or not limited in this spider-net

web, then the CCH group will forward the message to the

GCHs inside the web region. When a query message arrives at a

regional GCH, we provide a simple “match function” for the

query message in each GCH node. This match function can be

executed as a simple answer function, which provides ‘yes’,

‘no’ and ‘don’t know’. There are three different answers can

deal with query message forwarding. If the GCHs have the

query answer, it means “yes”, it will send back the source event

to the sinks. Otherwise, the GCHs only have “no” or default

value “don’t know” to deal with the query message. When

GCHs match the query message with “no” or default value

“don’t know”, they forward the query message to others in the

CCH group until they match the function or the TTL expires.

These GCHs provide stability of routing to the spider-net zone.

For the routing updates and the routing maintenance, we use

the same maintenance concept as the QoS pattern. Each cluster

head will periodically send out control packet during the course

of data session. In this case, if the GCH fails, the vicinity cluster

head will send out control packets to search the cluster heads

around this region to locally replace the GCH.

G
C
H

C
C
H

C: Core Cluster Head

G: Gateway Cluster Head

Event Message Path

Forward Event Message Path

CCH Group

I

C

H I

C

H

I

C

H

I

C

H
I

C

H

I

C

H

 I: Intermediate Cluster Head

(Mobile) Sink

(Mole node)

Query Message Path

Backup Path

Event

Information share

G
C
H

G
C
H

6

D. Data collection and redirect tunnel

Due to mobile sinks random movement, this causes broken

link between mobile sinks and the mole nodes. Therefore,

spider-net provides a redirect runnel, which provides a redirect

link to the new mole node locations. One of the best ways is to

build a link between new mole nodes with the previous mole

nodes before the old link fail.

When mobile sinks move, they will periodically broadcast

hello message to mole nodes. These mole nodes receive this

message and determine the signal strength from the mobile

sink. When communication signal with the vicinity cluster

heads rises over the threshold, these cluster heads can become

the new mole nodes. The new mole node will broadcast update

link messages including IP address to the old mole nodes. On

the other hand, when the old mole nodes receive such a

broadcast message from a new mole node, it informs the

previous cluster heads to redirect messages to the new mole

nodes as shown in Fig. 2.

 Figure 2. Regional Radiation Topology Algorithms Diagram.

V. FAULT TOLERANCE SPIDER-NET ZONE (SNZ)

ROUTING ALGORITHM

Consensus-based Fault Tolerance Algorithm: Generally sensor

nodes are very prone to failure. In dynamic and hostile

environment the rate of failure increases because of

environmental issues. This failure of nodes may cause

malicious faults [6]. A malicious fault occurs when a faulty

node delivers inconsistent data to non–faulty nodes thus results

in so called Byzantine Faults [6]. Byzantine faults are described

as a node in a network not only behaves erroneously, but also

fails to behave consistently when interacting with other nodes.

As described in [6], Byzantine faults can be reasoned from

Byzantine Generals Problem which expressed in terms of

generals deciding on a war mission of attack or retreat. The

generals can communicate with one another only by

messengers. After observing the enemy, they must decide upon

a common plan of action. Generally it is very difficult to

overcome the Byzantine faults and most existing solutions

address only some specific Byzantine failure.

To achieve high performance, and to overcome Byzantine

faults in MSWSN, we suggest a fault tolerance algorithm that

combines two consensus-based fault tolerance schemes. The

first part of our algorithm is to adapt a simple error-detection

scheme called Consensus-Checking. This consensus-checking

scheme has been implemented in parallel programming

systems in ByzwATCh [8]. In [8], the cluster heads

implementing consensus-checking are called Initiators. The

initiator implements challenge-response, consensus-checking

to vicinity cluster heads. These vicinity healthy nodes would

respond by sending the checking results back to the initiator.

Once initiator receives the reply message, it will have a list of

cluster heads software and hardware health statuses. According

to this checking list, the initiator can use these health statuses

and mark a grade parameter ‘κ’ to each cluster head. The node

that has higher mark κ means it has better health situation. This

scheme can be used to prevent the faulty nodes of reporting

inaccurate data by hardware and / or software checking

algorithm. This scheme can assist our consensus-based

decision scheme to find the “healthy” nodes in the networks.

The second part of our consensus decision algorithm comes

from the Consensus Theory [9]. This consensus theory involves

general procedures, which summarize estimates from multiple

experts decisions based on Bayesian decision theory

assumption. This theory has a combination formula obtained by

the consensus rules. Several consensus rules have been

proposed. Among them, the most commonly used consensus

rule is the Linear Opinion Pool (LOP) which has the following

(group probability) form for the user specified information

(land cover) class if data sources are used:

n

i

jjij xwPZC
1

)|()((6)

,where jC is consensus rules, j is indicate information

classes,],,,[21 nZZZZ is an input vector,

)|(jj xwP is a source-specific posterior probability and si '

),,2,1(ni are source-specific weights.

The main contribution of our fault tolerance algorithm is to

replace the i by the κ parameters which we mentioned in the

first part. The healthy parameter κ is to express quantitatively

the goodness of source data, which are controlled by

the sources.

To clarify our algorithm we provide the following example

with the diagrams shown in Fig. 3 (a), (b) to show how it is

working with our proposed routing protocol.

(a.) After deployment the network will start to organize as a

virtual spider net zone as described in [1]. Each Nine CHs will

be organized as a small ICHs for consensus checking. Each one

of these nodes will be the initiator for a certain period of time

and then its role changes periodically. The first node can be

CCH: Core Cluster Head

GCH: Gateway Cluster Head

Inform Message Path

Forward Event Message Path

 ICH: Intermediate Cluster Head

Query Message Path

Mobile Sink

G
C
H

C
C
H

CCH

Group

I

C

H

G
C
H

I

C

H G
C
H

I

C

H
I

C

H

I

C

H

I

C

H

I

C

H

I

C

H

I

C

H

(Old mole node)

G
C
H

C
C
H

I

C

H

G
C
H

I

C

H

G
C
H

I

C

H

I

C

H

I

C

H

I

C

H
I

C

H

I

C

H

I

C

H

Event

Mobile Sink

X

X

(New mole node)

Virtual

Tunnel

 Virtual Tunnel

CCH

Group

7

chosen according to its ID so the first initiator is the node with

the lowest ID then the next one, and so on. The initiator is

responsible to challenge the other eight neighboring nodes to

collect their health statuses. This is shown in Fig. 3(a) where

CH with ID = 5 becomes an initiator.

(b.) The initiator CH will generate challenge data and

broadcast it to the vicinity cluster heads. The neighboring

nodes, upon receiving this challenge message, will execute

consensus-checking, which uses the challenge list as an input to

a computational checking algorithm that performs a series of

checks to generate an output message. This checking list can

have hardware and / or software checking items. These

checking items can be designed according to user requirements.

(c.) Each vicinity ICH node performs a consensus-checking

to assess if any of the nodes returned a result that differs from

the expected result. After these cluster heads complete this

consensus-checking, they will respond back to the initiator by

sending a response message. The initiator will aggregate the

response messages and register the node health status results in

its memory, as shown in Fig. 3(b).

 Figure 3(a). Challenge Message. Figure 3(b). Response Message.

(d.) Based upon the results of this test, the initiator can select

healthy cluster heads accordingly. The results can be quantified

as parameter κ for each CH. The higher value means better

healthy condition and vice versa. Once the healthy cluster

heads have been listed, the initiator can run the

consensus-based decision scheme using equation (2) after

replacing i for each cluster head by its κ, then the LOP will be

executed to get the results)(ZC j . The initiator will send back

these results to each cluster head. In this algorithm, each node

will have a threshold value T; this T can be defined by user or

sensor application. If the cluster head’s result k is higher than

T, it will have high priority to forward the data or event through

the network. On the other hand, if the result is lower than T, it

will become a standby node or only assist in message

forwarding.

 (e.) To maintain this small region spider-net zone network

operation, our consensus-based algorithm also has a simple

replacement scheme to reselect a new cluster head. When a

cluster head fails or becomes standby node, its neighboring

cluster head will be aware of that in the short term, thus it will

broadcast spider-net zone construction message to the area. The

first CH node replies to this message will become the new

cluster head to replace the failed one. The diagram shown in

Fig. 4 shows our fault tolerance algorithm.

Figure 4. Consensus-based Fault Tolerance Algorithm Diagram.

Our consensus-based fault tolerance algorithm aims to

support data source accuracy and reliability by applying both

consensus-checking and consensus-detection schemes. It will

help to quick discovery and replacement of any faulty CH node.

As this detection and replacement of failure nodes is performed

locally, the algorithm achieves energy-efficiency while not

affecting the network communication. However, it increases

communication reliability when it works with our magnetic

coordinate routing protocol that aims to support data

communication reliability and energy efficiency by using both

parallel lines and magnetic polarity message forwarding

schemes. An example to show how the two schemes

interoperate is shown in Fig. 3(b) above. When the initiator has

the reply messages from the CHs, it will be aware which cluster

head is prone to failure or already in fault status, thus will

replace it quickly. During that time, our magnetic-coordination

routing will be using the redundant parallel routing capabilities,

therefore, one side failure node will not influent network

operation. When the two schemes work together, the network

will achieve high reliable and efficient data dissemination in

wireless sensor networks.

VI. PERFORMANCE EVALUATION

A. Performance Evaluation Setup

We evaluated FTSNZ using extensive simulation on the

Georgia Tech Network Simulator (GTNetS) [13]. GTNetS

has provided sensor network module, which is a scalable

simulation tool, designed specifically to support large-scale

sensor networks simulations. The design of the simulator

closely matches the design of real network protocol stacks

and hardware. This simulator applies C++ as its

programming language and has an object-oriented design,

which eases extensibility of existing simulation models.

Here, we describe the simulation setup and the metrics

5

6

X

X

2
2

1
3

3

2 1

 X

broadcast

challenge
response

message

faulty

message initiator
faulty

node

k =3

8

examined for the performance evaluation. In order to get the

average behavior, we implemented FTSNZ in the GTNetS

simulator sensor network module, our simulation consists of

(500 ≤ N ≤ 550) sensor nodes including cluster heads in a

1200m × 1200m area or 4-5 nodes per 100m × 100m. The

networks consist of (100 ≤ N < 150) cluster heads which any

of them could be a mole node. The Fig. 5 shows our FTSNZ

simulation environment.

Figure 5. Simulation Environment.

The simulation time is 500 seconds. Each node has a radio

range of 150m. We use few sources and one mobile sink

randomly selected from 525 nodes in our simulation. The

source sends data every 10 seconds, and the query is

periodically sent every 20 seconds. The energy

consumptions of transmitting and receiving are 0.66W and

0.395W. To evaluate the performance of FTSNZ, we

compare it to ODDD scheme. We use three main metrics to

evaluate the performance of FTSNZ; namely, energy

consumption, transmit successful rate and average

end-to-end delay. Due to GTNetS has default one sink

limitations, we only use one sink to compare with their

algorithm. Energy consumption includes that of moles node

competition, data dissemination, and the sink mobility. Our

main concern is how to reduce the mole nodes competition

for energy saving by considering the time limited to decide

the mole nodes. Therefore, we focus on energy consuming

for data dissemination and sink mobility management.

 Average Energy Consumption

In this experiment, we investigate the average energy

consumption and set the number of sensor nodes is varied

from 500 to 550 and one sink move by different speeds (0, 5,

10, 15, 20 m/sec). Both average sink refresh rate and average

source update rate are set to 10 seconds. The node density

has little influence on the energy per node in FTSNZ

although more neighbors overhear data from a sender at high

density. This is because there are more chances that better

energy cost paths can be found in a higher density network.

Fig. 6, FTSNZ shows the better performance in energy

consumption. The reason that FTSNZ achieves less energy

consumption is that the source can direct transmission event

from CCHs to mobile sink. This eliminates event route

through longer distance, which consumes energy in sensor

nodes and cluster heads in the network.

Average Energy Consumption

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25

Sink Speed (m/sec)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 f

o
r

T
x
 a

n
d

 R
x

SNZR

ODDD

525 nodes, 1200m X 1200m

Figure 6. Average Energy Consumption.

 Average End-To-End Delay

In the following experiment, we investigate the average

end-to-end delay as a function of the number of mobile sinks

and their speed. Fig. 7 shows that end-to-end delay increases

when mobile sink movement speed increase. In this

experiment, the number of sensor nodes including cluster

heads is varied from 80 to 90. Mobile sinks speed has

influence on the end average delay per node in FTSNZ

although the dynamic route changes from a sender send

different route to mobile sinks when they moving at different

speeds.

Average Delay

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25

Sink Speed (m/sec)

A
v
e
ra

g
e
 D

e
la

y
 (

S
e
c
)

SNZR

ODDD

525 nodes, 1200m X 1200m

Figure 7. Average End-To-End Delay.

 In this experiment, the number of sensor nodes including

cluster heads is varied from 500 to 550. Speed of mobile sink

move by different speeds (0, 5, 10, 15, 20 m/sec). As shown in

Fig. 7, FTSNZ has a shorter delay than the ODDD. FTSNZ

achieves lower average delay than the ODDD approach

because of shortest routing paths and also consume less energy

than the ODDD approaches.

 Average Packet Success Ratio

The success ratio is the ratio of the number of successfully

delivered data messages that have been received by the sink.

Our third experiment is to measure average success ratio for the

different speed of mobile sink movement. As the default

simulation setup, we have different speed of the mobile sink

from 0, 5, 10, 15, 20 m/sec. All other simulation parameters are

as specified as the default simulation scenario. As shown in Fig.

8, we observe that FTSNZ maintain high success ratio of above

90%. The average success ratio has a little bit decrease when

mobile sink movement speed increase. Our result shows that

9

our scheme achieves better success rate than the ODDD scheme

and obtains comparable success ratio with much less energy

cost than the ODDD approaches.

Average Packet Success Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Sink Speed (m/sec)

P
a
c
k
e
t

S
u

c
c
e
s
s
 R

a
te

SNZR

ODDD

525 nodes, 1200m X 1200m

Figure 8. Average Packet Success Ratio.

B. Fault-Tolerance Evaluation

In this fault tolerance experiments, we deploy 525 nodes

randomly over the region and one sink move by different

speeds (0, 5, 10, 15, 20 m/sec). In the following paragraphs,

we consider the effect of faulty nodes on the performance of

our networks. Once we set up the network environment, then

we vary the number of cluster heads failure from 5 to 20.

These faulty cluster heads are randomly distributed in these

125 cluster heads that alternate the node failure rate fixed

from 0.040 to 0.16. Fig. 9 ~ Fig. 12 depicts the numbers of

cluster heads failure and mobile sink speed effect on packet

success ratio of FTSNZ algorithm. The success ratio of

approach is around 90% with original FTSNZ network fault

tolerance algorithm. As the cluster heads failure rate

continues to increase, the success ratio starts to fall down.

However, comparing to the same environment without fault

tolerance algorithm it increase up 54% packet success ratio

with 20 cluster heads failure as shown in Fig. 9. Different

from other routing algorithms for sensor networks, FTSNZ

provide redundant links event dissemination for

communication link fault tolerance in sensor network. This

feature not only increases our average packet success

ratio but also increase the communication overheads for

event transmission.

5 Cluster Heads Failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Sink Speed (m/sec)

P
a
c
k
e
t

S
u

c
c
e
s
s
 R

a
ti

o

FT

Capability

Non-FT

Capability

Figure 9. (Non) Fault Tolerance with 5 Faulty Cluster Heads.

10 Cluster Heads Failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Sink Speed (m/sec)

P
a
c
k
e
t

S
u

c
c
e
s
s
 R

a
ti

o

FT

Capability

Non-FT

Capability

Figure 10. (Non) Fault Tolerance with 10 Faulty Cluster Heads.

15 Cluster Heads Failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Sink Speed (m/sec)

P
a
c
k
e
t

S
u

c
c
e
s
s
 R

a
ti

o

FT

Capability

Non-FT

Capability

Figure 11. (Non) Fault Tolerance with 15 Faulty Cluster Heads.

20 Cluster Heads Failure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Sink Speed (m/sec)

P
a
c
k
e
t

S
u

c
c
e
s
s
 R

a
ti

o

FT

Capability
Non-FT

Capability

Figure 12. (Non) Fault Tolerance with 20 Faulty Cluster Heads.

VII. CONCLUSION

In this paper, we introduce a Fault Tolerance Spider-Net

Zone (FTSNZ) routing protocol that combines spider-net zone

routing and consensus-based fault tolerance to provides high

performance, energy-efficiency and reliable communications in

MSWSN (Mobile Sinks Wireless Sensor Networks). First

FTSNZ has the potential as a significant efficient routing

mechanism that can provide mobile or static sinks gathering

sensing data with high-speed movement. FTSNZ uses a

spider-net network topology with QoS pattern control to

provide efficient routing, better guaranteed scheduling and data

collision avoidance in wireless sensor networks. The

simulation results show that our scheme achieves less energy

consumption, less average delay and better packet success ratio

than other related protocols. For our future work we will focus

on other fault tolerance issues to adopt extremely reliable

communication in wireless sensor networks.

10

REFERENCES

[1] S. Chang, M. Merabti, and H. Mokhtar: Spider-Net Zone

Routing Protocol for Mobile Sink Wireless Sensor

Networks, In Proceedings of the 2007 International

Conference on Wireless Networks (ICWN), pp. 209-215,

June 2007.

[2] J. Tateson and I. Marshall, “A Novel Mechanism for

Routing in Highly Mobile Ad Hoc Sensor Networks”,

H. Karl, A. Willig Karl and A. Wolisz (Eds): Wireless

Sensor Networks, LNCS 2920, pp. 204-217, 2004.

[3] S. Chang, M. Merabti, and H. Mokhtar, “EQEN - Efficient

Quality of Service Framework for Mobile Sinks Wireless

Sensor Networks”, In Proceedings of the PGNET 2005,

pp 26-31, Liverpool, UK, June 2005.

[4] H. Luo et al., “TTDD: Two-tier Data Dissemination in

Largescale Wireless Sensor Networks”, ACM/Kluwer

Mobile Networks and Applications, pp.148-159, Atlanta,

Georgia, USA, September, 2002.

[5] R. Kalva, J. Youn and C. Won, “ODDD: On-Demand

Data Dissemination in Large Wireless Sensor Networks”,

2005 IEEE 62nd Vehicular Technology Conference

(VTC2005-Fall), Dallas, Texas, USA, September 2005.

[6] S. Kim, S. H. Son, J. Stankovic, S. Li, and Y. Choi. “Safe:

A data dissemination protocol for periodic updates in

sensor networks.” In Workshop on Data Distribution for

Real-Time Systems (DDRTS), May 2003.

[7] C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed

Diffusion: A scalable and robust communication paradigm

for sensor networks", In Proceedings of the Sixth Annual

International Conference on Mobile Computing and

Networking, Boston, MA, pp. 56-67, August 2000.

[8] S. Lindsey, C. Raghavendra, and K. Sivalingam, "Data

gathering algorithms in sensor networks using energy

metrics," IEEE Trans. Parallel Distrib. System, vol. 13,

no. 9, pp. 924--935, 2002.

[9] M. Gerla, G. Pei, X. Hong, and T. Chen, “Fisheye State

Routing Protocol (FSR) for Ad Hoc Networks”,

November 2000, Internet Draft: draft-ietf-manet-fsr-01.

txt, expired.

[10] Q Wen, Z Zhao and R Li, H Zhang, “Spatial-temporal

compressed sensing based traffic prediction in cellular

networks”, In Proceedings of the 1st IEEE International

Conference on Communication in China Workshops

(ICCC), pp.119-124, August 2012.

[11] G. Caro, F. Ducatelle, and L. Gambardella. “AntHocNet:

An adaptive natureinspired algorithm for routing in

mobile ad hoc networks“, European Transactions on

Telecommunications, Special Issue on Self-organization in

Mobile Networking, vol. 16, no. 5, pp.443-455, June 2005.

[12] R. Rajagopalan, P. Varshney, K. Mehrotra and C. Mohan,

“Fault tolerant mobile agent routing in sensor networks: A

multi-objective optimization approach” Proc. of the 2nd

IEEE Upstate New York workshop on Communications

and Networking, Rochester, New York, November 2005.

[13] G. Riley, "Large-scale network simulations with GTNetS,"

In Proceedings of 2003 Winter Simulation Conference, pp.

676-684, 2003.

Shih-Hao Chang is a research fellow

with National Taiwan University,

Taiwan since 2011. His research

interests include Wireless Sensor

Networks, Packet Analysis and

Malware Detection Algorithms, (M2M)

Machine to Machine Communications.

He received Ph.D. from John Moores

University, Liverpool, UK in 2009.
Prior to his Ph.D., he worked in

industry for several years as an Engineer, Project Manager and

IT Manager and has been directly involved in the development

of several national and international projects for Lucent

Technologies, Chunghwa Telecom. He is a member of IEEE.

He His contact information is: Dr. Shih-Hao Chang, Research

Fellow, Intel-NTU Connected Context Computing Center,

National Taiwan University, Room F, 7F, Barry Lam Hall, No.

1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, Email:

shihhaochang@ntu.edu.tw.

Ping-Tsai Chung is an Associate

Professor with Department of

Computer Science, Long Island

University, Brooklyn Campus, where

he joined since 2000. He has been

serving as Chair of Department of

Computer Science at LIU-Brooklyn

since June 2004. He received Ph.D. in

Computer Science from Polytechnic

Institute of New York University

(NYU-Poly) on January 1998. From 1997 to 2000, he has

worked with AT&T and Lucent Technologies/Bell Labs for

developing High Speed Network Management Systems.

Previously, he has worked with Telecommunications Labs

(TL) for a Broadband ISDN development project in Taiwan.

His research interests are Network Computing, Intelligent

Systems, Web Services and Biomedical Informatics. He has

contributed several papers in above areas to the International

Journals and Conferences. He is an Associate Editor for the

Journal of Selected Areas in Bioinformatics (JBIO), Cyber

Journals: Multidisciplinary Journals in Science and Technology

(ISSN: 1925-2676). He is a senior member of IEEE Society, a

member of ACM Society. His contact information is: Prof.

Ping-Tsai Chung, Department of Computer Science, Associate

Professor and Chair, Long Island University, 1 University

Plaza, Brooklyn, New York 11201, USA, E-mail:

pchung@liu.edu.

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Merabti:Madjid.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mokhtar:Hala_M=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icwn/icwn2007.html
mailto:H.M.Mokhtar@livjm.ac.uk
mailto:shihhaochang@ntu.edu.tw
http://www.liu.edu/Brooklyn/Academics/Schools/SBPAIS/Dept/CS.aspx
http://www.liu.edu/Brooklyn/Academics/Schools/SBPAIS/Dept/CS.aspx
http://www.poly.edu/cis/
http://www.poly.edu/
http://www.poly.edu/
http://www.cyberjournals.com/associates.html
mailto:pchung@liu.edu

