
 

1 

 

 

Abstract—In this paper, we introduce a Fault Tolerance Spider-Net 

Zone (FTSNZ) routing protocol that combines spider-net zone routing 

and consensus-based fault tolerance to provide high performance, 

energy-efficiency and reliable communications in MSWSN (Mobile 

Sinks Wireless Sensor Networks). MSWSN consists of a large number 

of sensors with several mobile monitoring terminals, called mobile 

sinks. This algorithm utilizes a spatio-temporal topology that we call 

‘Spider-Net’, which is inspired by the way that a spider hunts using its 

own web. The spider uses spider catching silk, probably in some form 

of a simple sheet web, to capture their prey. When spider makes its 

own web, it will make radii lines of the web first, and then makes the 

circular threads around the web until whole web is finished. We use 

this phenomenon to build our network topology and routing for 

MSWSN. The sinks similar as spiders can have mobile capability and 

access data from network. For concerning the data reliability of 

spider-net, we provide consensus-based fault tolerance to avoid data 

failure in network. Through our simulation study, we show that 

FTSNZ scheme achieves less energy consumption, less average delay 

and better packet success ratio than other related protocols.  

 
Index Terms—Mobile sink, wireless sensor networks, spider-net 

zone routing, network topology, consensus-based fault tolerance, data 

dissemination, network reliability, performance evaluation. 

 

 

I. INTRODUCTION 

Spiders are one of the most technical predators you can 

observe in the natural world. A spider normally will build a web 

as a trap; this web is made of spider silk, a thin, strong strand 

extruded by the spider. The silk composes a spider web which 

can be used to wrap prey and for many other applications. 

Consider how the spider builds the spider-net; it will make radii 

lines of the web first. After finishing the radii lines of the web, 

the spider start to make the circular threads around the web to 

build the whole web. Wireless sensor networks (WSN) consist 

of a large number of sensors that have a variety of applications 

such as battlefield surveillance, environment monitoring, and 

target tracking. WSN normally use monitoring terminals called  
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sinks, these sinks could have mobile capability, similar as the 

spiders that catch the sources (prey) from the network.  

 

Mobile sinks wireless sensor networks (MSWSN) consist of 

a large number of sensors with several mobile monitoring 

terminals, called mobile sinks. Example of a mobile sink is a 

smart phone or PDA (Personal Digital Assistant) device carried 

by users to gather sensor readings, process and aggregate 

sensed data from local environment. This promising solution 

would enhance performance, extend network lifetime and 

reduce consumed energy and latency by routing data to a 

nearby mobile sink. However, it also introduces many 

problems and research challenges such as the high 

communication overhead for updating the dynamic routing 

paths to connect to mobile sinks, and the recovery of lost data 

because of sink mobility. In this paper, we introduce a new 

routing topology for data dissemination in a heterogeneous 

MSWSN. This algorithm is called Fault Tolerance Spider-Net 

Zone (FTSNZ) routing protocol.  

 

We use the concept of spider-net zone routing protocol [1], 

which provide an energy efficient and low latency routing 

protocol for multiple events propagation in wireless sensor 

networks with mobile sinks. We assumed that these mobile 

sinks can notify their neighboring cluster heads about their 

current location, and then these neighboring cluster heads will 

relay the data to mobile sinks. These neighboring cluster heads, 

which called moles, can provide current mobile sinks locations 

and maintain routing paths according to their movements. 

 

The major contributions of this paper are listed below. First, 

we use spider-net topology proposed in [1] to provide high 

performance routing through a spider-net zone sensor network. 

Second, we use consensus-based solutions to provide reliable 

network communication. Our algorithm adapts the magnetic 

query dissemination and extends it to provide a spider-net zone 

topology to improve network efficiency. Instead of changing 

the whole routing path when the mobile sink moves, we 

propose a partial update of the routing path based upon the new 

location of the mobile sink. Third, we provide a fault tolerance 

mechanism to increase the network reliability since sensor 

networks are prone to failure due to hardware, software, and 

environment issues. The main idea of this fault tolerance 
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mechanism is to ensure that faulty cluster heads do not share in 

data dissemination process, thus guarantee that mobile sinks 

gather correct data from proper cluster heads only.  

 

FTSNZ is a new routing algorithm utilize spider-net zone 

routing to achieve high performance, energy efficiency and 

reliability in MSWSN, our algorithm adapts of QoS pattern, 

and data centric dissemination. Our design criteria are 

described as follows: 

      High performance: Routing mechanisms can provide 

high performance data communication with extended 

networks lifetime by application requirements in terms 

and network conditions. 

      Energy-efficiency: Given data update demands, the 

protocol should be able to satisfy them with lower 

energy dissipation and ultimately extend the network 

lifetime. 

      Reliable communications: The protocol should be 

designed to achieve high data reliability in the 

presence of network dynamics.   

 

The rest of the paper is organized as follows. In Section II, 

background and related works are briefly described. In Section 

III, we present the Fault Tolerance Spider-Net Zone (FTSNZ) 

routing algorithm, we first discuss the general assumptions, we 

then organize the randomly deployed sensor network to form a 

spider-net topology mechanism and present our FTSNZ data 

dissemination mechanisms. In Section IV, we discuss the 

network management of the Fault Tolerance Spider-Net Zone 

(FTSNZ) routing protocol. We first present data collection and 

redirect tunnel for supporting mobile sinks random movement. 

We then discuss the Quality of Service (QoS) pattern control to 

provide efficient routing, better guaranteed scheduling. Finally, 

we conclusion and further work are explored in Section V.  

II. BACKGROUND & RELATED WORKS 

In this section, we provide an overview of a selection of 

protocols and mechanisms that have been developed to 

improve the performance of MSWSN. We will focus on routing 

protocols; path planning, and reliable data transfer 

mechanisms. To the best of our knowledge so far, only limited 

research has tried to address high performance issues in 

MSWSN. The Cluster-Based Routing Protocol (CBRP) is a 

well-known WSN protocol. The main strategy of the CBRP is 

to use a clustering approach to aggregate data and minimize 

on-demand route discovery traffic, reduce travel time and 

latency [1]. Cluster-heads normally have more power strength 

than normal sensor node in WSN. 

 

Zone Routing Protocol (ZRP) [2] is a hybrid routing scheme 

that contains both reactive and proactive components. ZRP uses 

proactive Intra Zone Routing Protocol (IARP) to maintain 

routing information for nodes that are within the routing zone 

of the node that can reduce the traffic overhead in the network. 

ZRP uses reactive Inter Zone Routing Protocol (IERP) that 

offers enhanced routing discovery and zone routing services 

based on local connectivity monitored by IARP. Fisheye Zone 

Routing Protocol (FZRP) [3] is an extension of ZRP adopting 

the concept of Fisheye State Routing (FSR) [9]. The idea of 

FZRP uses the ZRP concept to update routing information in its 

defined basic zone and to add a reduction factor to reduce the 

frequency of transmission updates in the extend zone. 

However, they do not concern the traffic overhead and 

reliability issues for link failure in WSN.  

 

A number of research efforts which focus on routing 

protocols in MSWSN aim at achieving power efficiency, load 

balancing and extended system lifetime in hostile 

environments. The TTDD [4] protocol builds a grid structure 

and divides the network into cells with several dissemination 

nodes. The dissemination nodes are responsible for relaying the 

query and data to and from the proper sources. ODDD [5] is 

another protocol that improves the TTDD [4] that is more 

suitable for dynamic large wireless sensor networks. In ODDD, 

a source does not proactively construct a virtual grid. Instead, a 

source sends a data announce message along the X-axis only. 

Therefore, ODDD reduces the amount of communication 

overhead for creating and maintaining virtual grid structures 

over the entire network. However, due to ODDD sends along 

the X-axis only, therefore it may take grid node fail risk that 

lead to network failure. In this routing mechanism, there is no 

fault tolerance algorithm for any grid node fail on X-axis.    

 

SAFE [6] and Directed diffusion [7] utilize data 

dissemination path sharing among multiple data sinks and 

attempt to minimize message exchanges to achieve energy 

saving over the network. They flood "query" messages to the 

entire network and find out the source node and junction nodes 

that help to setup the dissemination path. Flooding is 

geographically limited to forward the query to nodes along the 

direction of the source. In contrast to directed diffusion, SAFE 

uses geographically limited flooding to find the gate connecting 

itself to the tree. Directed diffusion and SAFE are most 

effective in small-to-medium size sensor networks. In a very 

large network, the initial sensor flooding may consume too 

much energy. Due to their junction node’s algorithm, it will be 

resulted in long-term waiting for the source information when 

the path is broken or congested. Our approach aims at providing 

energy efficiency, and high performance data dissemination    

for MSWSN.  

III. FAULT TOLERANCE SPIDER-NET ZONE (FTSNZ) 

ROUTING ALGORITHM 

Fault Tolerance Spider-Net Zone routing protocol (FTSNZ) 

is a hierarchical hybrid scheme for query based data 

dissemination for mobile sinks in WSN. In this section, we first 

give the assumptions and environment requirements.  Then we 

explain the FTSNZ in the following four subsections: In the 

section A, we provide a set of general assumptions of the 

network model for FTSNZ. We then discuss the construction 

spider-net topology mechanism in section B, the spider-net data 

dissemination mechanism in section C.   
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A.  General Assumptions 

 

We consider the specific case where there is an inherent 

pattern to the sink’s movement through the sensor field with 

allowance for some variance. The network model for FTSNZ 

makes the following general assumptions:  

       The sensor nodes and cluster-heads are knowledgeable 

about their neighbor nodes and location aware of their 

geographic locations. Several algorithms exist to estimate 

the locations of the individual nodes that provide route 

messages towards geographic locations. 

       The sensor nodes and cluster heads are regularly 

deployed over the entire sensing region. The sensor nodes 

and cluster heads are heterogeneous with constrained 

energy resource. Their wireless communication channels 

are bidirectional.   

       After deployment these sensor nodes and cluster heads 

will all remain stationary at their initial in a flat 

two-dimensional space.  

      Each mobile sink only broadcasts the hello message to the 

neighboring cluster-heads and concentrates on continue 

listening to reply messages around it.  

      The sensor nodes will aggregate data or event messages 

and send across to vicinity cluster-heads then forward to 

mobile sinks. That is to say, sources and mobile sinks are 

typically much further apart than a single radio radius  

(multi-hop). 

 

B.  Spider-Net Zone Topology Mechanism    

 

We use the spider-net topology mechanism [1] to form the 

dynamic network in randomly deployed sensor nodes. The idea 

of the spider-net zone [1] is based on assumption which all 

nodes in the network can aware of their own coordinates 

location, and each node also can obtain neighbor nodes 

coordinate information by periodically exchange coordinates 

information. The key of this construction is any GCH in the 

network can broadcast a spider-net zone construction message 

to the center area of the network by directional antenna. This 

construction message will be forwarded to it specific direction 

1-hop away neighboring nodes inside range R, which has angle 

 . The nodes receive this message will check its location 

information whether it is a center node. If it is the center node, it 

will broadcast this construction message to its 1-hop away 

node. Otherwise, it will continuously forward this construction 

message to its next neighboring nodes with same angle  .  

 

To form the CCHs in the spider net, each cluster-head can 

use peer-to-peer technology which provides advertisement, 

listening and publication functions. Each cluster head will 

broadcast advertisements and listen to neighboring 

cluster-heads before its control timer is expired. The 

advertisement and listening functions for each cluster-head 

becomes aware of its coverage level to neighboring nodes. The 

timer function in each cluster-head closely monitors the status 

of neighboring cluster-heads and values can be set to the 

communication interval of the query message. This coverage 

level is to decide the cluster head role in the spider-net. CCH 

 can be defining as a cluster-head that covers three or more 

cluster-heads in one web.  

 

Core Cluster Head (CCH) Election: When initiating a 

randomly deployed sensor network, each cluster head will 

broadcast its advertisement and listen to neighboring cluster 

heads’ responses. Therefore, it is likely to have multiple CCHs 

or non-CCHs in a region.  

 

(1) For multiple CCHs in a region: These CCHs can be aware 

themselves when the timer of advertisement and listening is 

expired. If there are multiple CCHs in a region, each candidate 

cluster head will announce it to be the CCH and will also 

receive the announcement messages of other CCHs. This 

announcement message will include their ID numbers. We 

assume that every sensor node has an ID number. Therefore, 

when the candidate cluster head receives other candidate 

cluster heads with ID larger than its own, it will stop sending 

announcement messages and change its state to become a 

normal cluster head. Finally, there will be only one CCH in the 

spider-net.  

 

For non-CCHs in a region: The announcement message 

approach also applies to the situation of non-CCHs in a region. 

When the timer has expired, if no cluster head has received any 

announcement in this region, then the cluster heads covered by 

two cluster heads can be the candidate CCHs. Therefore, if the 

candidate cluster head receives other candidate cluster head IDs 

bigger than its own, it will stop sending announcement 

messages and change its state to become a normal cluster head. 

   

(2) Gateway Cluster Head (GCH) Election: After CCHs for 

every spider-net have been elected; CCH will broadcast 

announcement messages within α hop distance to notify the 

border cluster heads. This “α” hop distance can be decided by 

the designer that defines the size of the spider-net. In this 

situation, those border cluster heads receiving two or more 

different CCH ID announcement messages are the GCHs. After 

the GCHs have been decided, the CCH can manage all the 

routing information to the GCHs in the spider-net. At this stage, 

the shape of the spider-net is now similar to the radii lines of a 

web built by a genuine spider, as shown in Fig. 1 (a). GCHs are 

mainly for the maintenance of link changes in two different 

webs. If the topologies between two webs go down or up, a 

GCH will inform the CCHs in these two regions.  

 

(3) Intermediate Cluster Head (ICH) Formation: After the GCH 

has been elected, the CCH will broadcast to its 1-hop away 

cluster heads. These cluster heads are similar to the first ring 

that circulates around the CCH, which we call the CCH group. 

This CCH group will start to organize the network similar to the 

chain protocol [11], which uses the location information to 

greedy broadcast to its vicinity neighbors to form the network. 

Therefore, the cluster heads on the CCH to GCH paths that also 

receive location based greedy broadcast will become the ICHs 
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in the network. This network formation is like the spider 

building the circular threads on its web until it reaches the 

GCHs. Each ICH will have routing information for all the 

ICHs, CCH and terminal GCH on the path information. 

Therefore, this spider-net can divide the network into            

different zones. 

 

CCH Group Functionality: the central bold circle is the CCH 

group. This bold circle reduces the distances to the destination. 

The cluster heads belonging to this group will share routing 

information; therefore the CCH group can provide efficient 

data dissemination in the network. The CCH group also 

provides many benefits in terms of maintenance and reliable 

communication. When an ICH sends a ‘hello’ packet to its 

neighbor ICH, it starts a hold timer, which is the amount of time 

that a router treats a neighbor as reachable. If a ‘hello’ packet is 

not received within the hold timer, the hold timer expires and 

this cluster head will inform the CCH group to maintain the 

route. Due to the fact that it only monitors neighboring nodes, 

the energy cost in maintenance overhead is small. When an 

event occurs in the spider-net, the event message will be sent to 

the CCH group. The CCH group can know the event source ID 

and event message. When the query message arrives, the CCH 

group can respond with source information to the mobile sink, 

and then the sink can decide to query or discard. In addition, 

due to the shape of the spider-net, it can provide multi-route 

paths in the case when the first routing path failed. After the 

spider-net zone topology has been initialised, each spider-net 

zone is similar to a big triangle and each cluster head will know 

its role in this network.   

 

C.  Spider-Net Data Dissemination Mechanism 

 

In this section, we introduce a simple routing path setup and 

data dissemination mechanism for spider-nets in WSN. After 

the network topology has been initialized, the routing paths will 

be set up before the sinks reach the spider-net network. In our 

network topology, each small square of the spider-net is a 

trapezium shape, similar to the square shapes found in TTDD 

[6]. When an event happens in the spider-net, the response is 

similar to that of TTDD, with transmission of the event 

message only to the vicinity ICHs. This event message will use 

the routing path from the ICHs to the CCH group. Then the 

cluster heads in the CCH group belonging to the event message 

zone will save this event message and keep it memory resident 

until the sinks hello message arrives. These sinks can broadcast 

hello messages to α-hop-away cluster heads around the 

network. These vicinity cluster heads we call mole nodes. The 

mole nodes will forward the hello message through the ICHs to 

the CCH group and redirect the event message backflow to the 

sinks. For providing reliable communication in the Fault 

tolerant spider-net zone routing protocol (FTSNZ), we provide 

Quality of Service (QoS) patterns to adapt the data 

dissemination. Then we introduce our routing mechanisms        

in FTSNZ. 

IV. FAULT TOLERANT SPIDER-NET ZONE (FTSNZ) 

ROUTING MANAGEMENT 

 

A.   Quality of Service Pattern  

 

We apply a pattern framework for analysis of QoS time from 

[10] to our work. Due to this framework being focused on 

spatial-temporal QoS pattern analysis, the statistical model can 

be set up for every cluster head to analyse regional network 

conditions. This provides more practical measurement of QoS 

that has benefits for evaluating network conditions in dynamic 

network topologies. In intra-domain topologies, we can use the 

trafficnetQ _ , to measure network traffic on the routing paths in 

our network. In inter-domain topologies, we can use the 

delayendQ _ , to measure end-to-end delay on the routing paths in 

our network. These statistical results can apply thresholds to 

decide the network link quality. The time series data 

delayendQ _  describes the QoS of end-to-end delay in 

connection  iC  for some interval  . 

          

)(
21_ nCCCdelayend QQQQ                 (1)     

                        

B.  Intra-Spider-Net Zone Routing Algorithm & Maintenance 

 

As we mentioned in the description of ICH formation, the 

CCH group will start to organize the network similarly to the 

chain protocol [12]. They will use greedy broadcast 

announcement messages. These announcement messages work 

like the spider building the radial lines of the web, which will 

transverse through every ICH in the network until arriving at 

the GCHs. After ICHs and GCHs received these announcement 

messages, they will add the routing paths into the aggregation 

messages, from the transverse previous cluster heads and next 

cluster heads. In addition, as we discussed above, the CCH will 

broadcast announcement messages within α hop distance to 

notify the border cluster heads. This longitudinal routing will 

provide every ICH on this path with the routing information to 

its CCH and GCH. These announcement messages will allow 

the construction of a small routing table in each ICH, which 

records the neighboring cluster head information.  

 

The announcement messages include a time tag. Therefore, 

both the CCH group and GCHs can summarize total 

transmission time and select the best routing paths to each other 

as shown as Fig. 1. After the best routing paths have been 

selected, the GCHs will use the best routing path to return 

registration messages to the CCH. Each registration message 

includes the gateway cluster head’s (GCH’s) ID, transmission 

time and routing path information. Once the registration 

packets have been received by the CCH, intra-region routing 

paths are set up. 
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Figure 1.  Intra-Spider-Net Zone Diagram. 

We now consider how the event message transmits to the 

sinks. When a sensor in the network sends an event message to 

the vicinity GCH (or ICH), GCH use the greedy forwarding 

routing protocol to forward event messages to the CCH group. 

This event message will be saved in the CCH group until the 

sink’s hello message arrives. When the sink sends a hello 

message, it will only be broadcast to α-hop vicinity mole nodes. 

These mole nodes will forward the hello message through 

middle ICHs to the CCH group. When the CCH group receives 

this message, they will check any aggregated event message 

that can send to sinks nodes. If the events over the defined 

threshold, these event messages can be send back to the sink 

using the same routing path. In addition, the event message also 

includes a time tag. If the time tag has expired, the CCH group 

will remove this event from its memory. 

 

For the routing update and maintenance problem, we use 

QoS patterns and control packets to provide more practical 

measurement network conditions to find better paths. These 

QoS patterns ( patternQ ) have defined levels in each cluster 

head. The QoS patterns can provide consequences of 

conducting the next hop routing path. When CCHs receive this 

packet, they maintain or update routing paths in the region in 

accordance with the QoS levels of this path. This QoS pattern 

composes different gravity (Gty) of QoS levels of this routing 

path. These gravity parameters are used to provide 

self-adjustment and optimize priority tasks in each cluster head. 

In our algorithm, we list the QoS end-to-end delay’s gravity 

( GtyQ ), Power remains’ gravity ( GtyP ) and Network  lifetime’s 

gravity ( GtyN ).  

                             

)( _ GtylifetimeGtyremainGtydelayendpattern NNPPQQQ 
    (2)       

 , where  remainP is the remaining power, and  lifetimeN is the 

network lifetime. 

 

If the QoS pattern is available, we apply the same algorithm 

from [11] which provide routing path with the probability 

pathP  to CCH as follows. 

 

                               

                1,
)(

)(


 






i
dNj pattern

pattern

path
Q

Q
P ,             (3)  

where  
i

dN is the set of neighbours of  i over which a path to d  

is known, and β is a parameter value which can lower the 

exploratory behaviour of the proactive control packets. This 

proactive control packet can provide an adaptable routing path 

by evaluating the QoS pattern value in this path. In this way, 

routing failures can be solved when the single path suffers a 

failure.  

 

C.  Inter-Spider-Net Zone Routing Algorithm & Management 

 

In this section, we discuss how to setup the routing paths 

between different regions. As we mentioned above, after a 

GCHs receives the announcement message from the CCH, the 

GCH will return the registration message to the CCH. When the 

CCH receives this registration message during the long waiting 

timer (LWT), then both CCH and GCH will have the routing 

information to each other. Otherwise, after the LWT expires 

and the CCH still does not receive a registration message from 

the GCH, the GCH will not belong to this CCH. Once the 

registration message return to the CCH, inter spider-net zone 

routing algorithm is initialised. 

 

The query message includes a query ID, query item and 

Time-To-Live (TTL) value. When the CCH group receives a 

query message, it will check these two contexts. If these two 

parameters are not in this web or not limited in this spider-net 

web, then the CCH group will forward the message to the 

GCHs inside the web region. When a query message arrives at a 

regional GCH, we provide a simple “match function” for the 

query message in each GCH node. This match function can be 

executed as a simple answer function, which provides ‘yes’, 

‘no’ and ‘don’t know’. There are three different answers can 

deal with query message forwarding. If the GCHs have the 

query answer, it means “yes”, it will send back the source event 

to the sinks. Otherwise, the GCHs only have “no” or default 

value “don’t know” to deal with the query message. When 

GCHs match the query message with “no” or default value 

“don’t know”, they forward the query message to others in the 

CCH group until they match the function or the TTL expires. 

These GCHs provide stability of routing to the spider-net zone. 

 

For the routing updates and the routing maintenance, we use 

the same maintenance concept as the QoS pattern. Each cluster 

head will periodically send out control packet during the course 

of data session. In this case, if the GCH fails, the vicinity cluster 

head will send out control packets to search the cluster heads 

around this region to locally replace the GCH. 
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D.  Data collection and redirect tunnel 

 

Due to mobile sinks random movement, this causes broken 

link between mobile sinks and the mole nodes. Therefore, 

spider-net provides a redirect runnel, which provides a redirect 

link to the new mole node locations. One of the best ways is to 

build a link between new mole nodes with the previous mole 

nodes before the old  link fail. 

 

When mobile sinks move, they will periodically broadcast 

hello message to mole nodes. These mole nodes receive this 

message and determine the signal strength from the mobile 

sink. When communication signal with the vicinity cluster 

heads rises over the threshold, these cluster heads can become 

the new mole nodes. The new mole node will broadcast update 

link messages including IP address to the old mole nodes. On 

the other hand, when the old mole nodes receive such a 

broadcast message from a new mole node, it informs the 

previous cluster heads to redirect messages to the new mole 

nodes as shown in Fig. 2. 

 

 
 Figure 2.  Regional Radiation Topology Algorithms Diagram. 

V. FAULT TOLERANCE SPIDER-NET ZONE (SNZ)                

ROUTING ALGORITHM 

Consensus-based Fault Tolerance Algorithm: Generally sensor 

nodes are very prone to failure. In dynamic and hostile 

environment the rate of failure increases because of 

environmental issues. This failure of nodes may cause 

malicious faults [6]. A malicious fault occurs when a faulty 

node delivers inconsistent data to non–faulty nodes thus results 

in so called Byzantine Faults [6]. Byzantine faults are described 

as a node in a network not only behaves erroneously, but also 

fails to behave consistently when interacting with other nodes. 

As described in [6], Byzantine faults can be reasoned from 

Byzantine Generals Problem which expressed in terms of 

generals deciding on a war mission of attack or retreat. The 

generals can communicate with one another only by 

messengers. After observing the enemy, they must decide upon 

a common plan of action. Generally it is very difficult to 

overcome the Byzantine faults and most existing solutions 

address only some specific Byzantine failure.  

 

To achieve high performance, and to overcome Byzantine 

faults in MSWSN, we suggest a fault tolerance algorithm that 

combines two consensus-based fault tolerance schemes. The 

first part of our algorithm is to adapt a simple error-detection 

scheme called Consensus-Checking. This consensus-checking 

scheme has been implemented in parallel programming 

systems in ByzwATCh [8]. In [8], the cluster heads 

implementing consensus-checking are called Initiators. The 

initiator implements challenge-response, consensus-checking 

to vicinity cluster heads. These vicinity healthy nodes would 

respond by sending the checking results back to the initiator. 

Once initiator receives the reply message, it will have a list of 

cluster heads software and hardware health statuses. According 

to this checking list, the initiator can use these health statuses 

and mark a grade parameter ‘κ’ to each cluster head. The node 

that has higher mark κ means it has better health situation. This 

scheme can be used to prevent the faulty nodes of reporting 

inaccurate data by hardware and / or software checking 

algorithm. This scheme can assist our consensus-based 

decision scheme to find the “healthy” nodes in the networks.  

 

The second part of our consensus decision algorithm comes 

from the Consensus Theory [9]. This consensus theory involves 

general procedures, which summarize estimates from multiple 

experts decisions based on Bayesian decision theory 

assumption. This theory has a combination formula obtained by 

the consensus rules. Several consensus rules have been 

proposed. Among them, the most commonly used consensus 

rule is the Linear Opinion Pool (LOP) which has the following 

(group probability) form for the user specified information 

(land cover) class if data sources are used: 

                                      

                        



n

i

jjij xwPZC
1

)|()(                  (6) 

,where  jC is consensus rules, j is indicate information 

classes, ],,,[ 21 nZZZZ  is an input vector, 

)|( jj xwP is a source-specific posterior probability and si '  

),,2,1( ni  are source-specific weights.  

 

The main contribution of our fault tolerance algorithm is to 

replace the  i by the κ parameters which we mentioned in the 

first part. The healthy parameter κ is to express quantitatively 

the goodness of source data, which are controlled by                        

the sources.  

 

To clarify our algorithm we provide the following example 

with the diagrams shown in Fig. 3 (a), (b) to show how it is 

working with our proposed routing protocol. 

(a.) After deployment the network will start to organize as a 

virtual spider net zone as described in [1]. Each Nine CHs will 

be organized as a small ICHs for consensus checking. Each one 

of these nodes will be the initiator for a certain period of time 

and then its role changes periodically. The first node can be 
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chosen according to its ID so the first initiator is the node with 

the lowest ID then the next one, and so on. The initiator is 

responsible to challenge the other eight neighboring nodes to 

collect their health statuses. This is shown in Fig. 3(a) where 

CH with ID = 5 becomes an initiator. 

(b.) The initiator CH will generate challenge data and 

broadcast it to the vicinity cluster heads. The neighboring 

nodes, upon receiving this challenge message, will execute 

consensus-checking, which uses the challenge list as an input to 

a computational checking algorithm that performs a series of 

checks to generate an output message. This checking list can 

have hardware and / or software checking items. These 

checking items can be designed according to user requirements. 

(c.) Each vicinity ICH node performs a consensus-checking 

to assess if any of the nodes returned a result that differs from 

the expected result. After these cluster heads complete this 

consensus-checking, they will respond back to the initiator by 

sending a response message. The initiator will aggregate the 

response messages and register the node health status results in 

its memory, as shown in Fig. 3(b).  

 
 Figure 3(a).  Challenge Message.     Figure 3(b). Response Message. 

 

(d.) Based upon the results of this test, the initiator can select 

healthy cluster heads accordingly. The results can be quantified 

as parameter κ for each CH. The higher value means better 

healthy condition and vice versa. Once the healthy cluster 

heads have been listed, the initiator can run the 

consensus-based decision scheme using equation (2) after 

replacing i for each cluster head by its κ, then the LOP will be 

executed to get the results )(ZC j . The initiator will send back 

these results to each cluster head. In this algorithm, each node 

will have a threshold value T; this T can be defined by user or 

sensor application. If the cluster head’s result k is higher than 

T, it will have high priority to forward the data or event through 

the network. On the other hand, if the result is lower than T, it 

will become a standby node or only assist in message 

forwarding.  

 (e.) To maintain this small region spider-net zone network 

operation, our consensus-based algorithm also has a simple 

replacement scheme to reselect a new cluster head. When a 

cluster head fails or becomes standby node, its neighboring 

cluster head will be aware of that in the short term, thus it will 

broadcast spider-net zone construction message to the area. The 

first CH node replies to this message will become the new 

cluster head to replace the failed one. The diagram shown in 

Fig. 4 shows our fault tolerance algorithm. 

 

 
Figure 4.  Consensus-based Fault Tolerance Algorithm Diagram. 

 

Our consensus-based fault tolerance algorithm aims to 

support data source accuracy and reliability by applying both 

consensus-checking and consensus-detection schemes. It will 

help to quick discovery and replacement of any faulty CH node. 

As this detection and replacement of failure nodes is performed 

locally, the algorithm achieves energy-efficiency while not 

affecting the network communication. However, it increases 

communication reliability when it works with our magnetic 

coordinate routing protocol that aims to support data 

communication reliability and energy efficiency by using both 

parallel lines and magnetic polarity message forwarding 

schemes. An example to show how the two schemes 

interoperate is shown in Fig. 3(b) above. When the initiator has 

the reply messages from the CHs, it will be aware which cluster 

head is prone to failure or already in fault status, thus will 

replace it quickly. During that time, our magnetic-coordination 

routing will be using the redundant parallel routing capabilities, 

therefore, one side failure node will not influent network 

operation. When the two schemes work together, the network 

will achieve high reliable and efficient data dissemination in 

wireless sensor networks. 

VI. PERFORMANCE EVALUATION 

 

A.  Performance Evaluation Setup 

 

We evaluated FTSNZ using extensive simulation on the 

Georgia Tech Network Simulator (GTNetS) [13]. GTNetS 

has provided sensor network module, which is a scalable 

simulation tool, designed specifically to support large-scale 

sensor networks simulations. The design of the simulator 

closely matches the design of real network protocol stacks 

and hardware. This simulator applies C++ as its 

programming language and has an object-oriented design, 

which eases extensibility of existing simulation models. 

Here, we describe the simulation setup and the metrics 
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examined for the performance evaluation. In order to get the 

average behavior, we implemented FTSNZ in the GTNetS 

simulator sensor network module, our simulation consists of 

(500 ≤ N ≤ 550) sensor nodes including cluster heads in a 

1200m × 1200m area or 4-5 nodes per 100m × 100m. The 

networks consist of (100 ≤ N < 150) cluster heads which any 

of them could be a mole node. The Fig. 5 shows our FTSNZ 

simulation environment. 

 
Figure 5. Simulation Environment. 

 

The simulation time is 500 seconds. Each node has a radio 

range of 150m. We use few sources and one mobile sink 

randomly selected from 525 nodes in our simulation. The 

source sends data every 10 seconds, and the query is 

periodically sent every 20 seconds. The energy 

consumptions of transmitting and receiving are 0.66W and 

0.395W. To evaluate the performance of FTSNZ, we 

compare it to ODDD scheme. We use three main metrics to 

evaluate the performance of FTSNZ; namely, energy 

consumption, transmit successful rate and average 

end-to-end delay. Due to GTNetS has default one sink 

limitations, we only use one sink to compare with their 

algorithm. Energy consumption includes that of moles node 

competition, data dissemination, and the sink mobility. Our 

main concern is how to reduce the mole nodes competition 

for energy saving by considering the time limited to decide 

the mole nodes. Therefore, we focus on energy consuming 

for data dissemination and sink mobility management. 

 Average Energy Consumption 

In this experiment, we investigate the average energy 

consumption and set the number of sensor nodes is varied 

from 500 to 550 and one sink move by different speeds  (0, 5, 

10, 15, 20 m/sec). Both average sink refresh rate and average 

source update rate are set to 10 seconds. The node density 

has little influence on the energy per node in FTSNZ 

although more neighbors overhear data from a sender at high 

density. This is because there are more chances that better 

energy cost paths can be found in a higher density network. 

Fig. 6, FTSNZ shows the better performance in energy 

consumption. The reason that FTSNZ achieves less energy 

consumption is that the source can direct transmission event 

from CCHs to mobile sink. This eliminates event route 

through longer distance, which consumes energy in sensor 

nodes and cluster heads in the network. 
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Figure 6.  Average Energy Consumption. 

 

  Average End-To-End Delay  

In the following experiment, we investigate the average 

end-to-end delay as a function of the number of mobile sinks 

and their speed. Fig. 7 shows that end-to-end delay increases 

when mobile sink movement speed increase. In this 

experiment, the number of sensor nodes including cluster 

heads is varied from 80 to 90. Mobile sinks speed has 

influence on the end average delay per node in FTSNZ 

although the dynamic route changes from a sender send 

different route to mobile sinks when they moving at different 

speeds.  
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Figure 7. Average End-To-End Delay. 

 

 In this experiment, the number of sensor nodes including 

cluster heads is varied from 500 to 550. Speed of mobile sink 

move by different speeds (0, 5, 10, 15, 20 m/sec). As shown in 

Fig. 7, FTSNZ has a shorter delay than the ODDD. FTSNZ 

achieves lower average delay than the ODDD approach 

because of shortest routing paths and also consume less energy 

than the ODDD approaches. 

 

 Average Packet Success Ratio  

The success ratio is the ratio of the number of successfully 

delivered data messages that have been received by the sink. 

Our third experiment is to measure average success ratio for the 

different speed of mobile sink movement. As the default 

simulation setup, we have different speed of the mobile sink 

from 0, 5, 10, 15, 20 m/sec. All other simulation parameters are 

as specified as the default simulation scenario. As shown in Fig. 

8, we observe that FTSNZ maintain high success ratio of above 

90%. The average success ratio has a little bit decrease when 

mobile sink movement speed increase. Our result shows that 
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our scheme achieves better success rate than the ODDD scheme 

and obtains comparable success ratio with much less energy 

cost than the ODDD approaches. 
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Figure 8.  Average Packet Success Ratio. 

 

B.  Fault-Tolerance Evaluation 

 

In this fault tolerance experiments, we deploy 525 nodes 

randomly over the region and one sink move by different 

speeds (0, 5, 10, 15, 20 m/sec). In the following paragraphs, 

we consider the effect of faulty nodes on the performance of 

our networks. Once we set up the network environment, then 

we vary the number of cluster heads failure from 5 to 20. 

These faulty cluster heads are randomly distributed in these 

125 cluster heads that alternate the node failure rate fixed 

from 0.040 to 0.16. Fig. 9 ~ Fig. 12 depicts the numbers of 

cluster heads failure and mobile sink speed effect on packet 

success ratio of FTSNZ algorithm. The success ratio of 

approach is around 90% with original FTSNZ network fault 

tolerance algorithm. As the cluster heads failure rate 

continues to increase, the success ratio starts to fall down. 

However, comparing to the same environment without fault 

tolerance algorithm it increase up 54% packet success ratio 

with 20 cluster heads failure as shown in Fig. 9. Different 

from other routing algorithms for sensor networks, FTSNZ 

provide redundant links event dissemination for 

communication link fault tolerance in sensor network. This 

feature not only increases our average packet success                 

ratio but also increase the communication overheads for          

event transmission. 
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Figure 9. (Non) Fault Tolerance with 5 Faulty Cluster Heads. 
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Figure 10. (Non) Fault Tolerance with 10 Faulty Cluster Heads. 
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Figure 11. (Non) Fault Tolerance with 15 Faulty Cluster Heads.  
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Figure 12. (Non) Fault Tolerance with 20 Faulty Cluster Heads. 

 

VII. CONCLUSION 

In this paper, we introduce a Fault Tolerance Spider-Net 

Zone (FTSNZ) routing protocol that combines spider-net zone 

routing and consensus-based fault tolerance to provides high 

performance, energy-efficiency and reliable communications in 

MSWSN (Mobile Sinks Wireless Sensor Networks). First 

FTSNZ has the potential as a significant efficient routing 

mechanism that can provide mobile or static sinks gathering 

sensing data with high-speed movement. FTSNZ uses a 

spider-net network topology with QoS pattern control to 

provide efficient routing, better guaranteed scheduling and data 

collision avoidance in wireless sensor networks. The 

simulation results show that our scheme achieves less energy 

consumption, less average delay and better packet success ratio 

than other related protocols. For our future work we will focus 

on other fault tolerance issues to adopt extremely reliable 

communication in wireless sensor networks.  
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