

1

Abstract— Software testing is known to be the most difficult

and expensive phase of the software development life-cycle. When

it comes to testing web based applications, this task is even more

difficult because of the peculiarities of such applications. Many

techniques and tools have been developed to test web applications

and automate the different activities involved in this

practice, both for the server side and the client side of the

application. However, these tests are performed separately; there

exists no such a tool that supports integration testing for web

applications where server and client side are combined and tested

as a group. In this paper, we provide a method that allows testing

both parts at the same time. The aim of this method is to

sanitize data sent from the server before it is received by the

client. Hence, it ensures that the client receives the right

response from the server. It supports teams by applying agile

development methods such as continuous integration.

Index Terms— Client side, integration testing, server side, web

application.

I. INTRODUCTION

omputer technology with its vast diversity has become an

essential element in all kinds of human activity. The

Internet and computer software grew in less than two decades

to achieve the status of the largest information repository in

human history. By providing efficient, fast, consistent and

authentic tools in the form of internet and computer software,

information technology is penetrating human life and is

playing an important role in changing lives of so many people

around the globe.

In the last decade, a significant growth of the demand of

Web-based applications has been recorded, especially to serve

business purposes. As more organizations are using the

web to offer their services and to be reached by a wide

range of customers, their requirements for reliability,

security, scalability and accessibility are being stricter. In

order to ensure that a web application conforms to these

quality attributes, testing becomes a crucial part of the

development life-cycle. Testing web based applications is

different from testing other software systems because of

factors related to performance and user experience [1]. These

factors have to be taken into consideration for the application

to work correctly in all situations. Some of these factors are:

• Numerous application usage paths are possible depending

on the set of tasks that the users want to perform

• Large number of users will access and use the application

concurrently

• Users have different backgrounds, different technical

skills and some or all functionalities should be self-

explanatory

• Different types of browsers might be used to access the

application

• Security measures should be more stringent

There exist many techniques for testing server-side and

client- side code separately. As an example, Selenium [2] is a

tool that allows writing automated user interface (UI) tests for

web applications in any programming language against any

HTTP website using any mainstream browser. PHPUnit [3]

and JsUnit [4] are tools used for testing and automating test

operations for web based applications. These tools are efficient

in reducing not only the defects of a program, but also the time

for detecting and resolving those defects. However, none of

these tools supports testing server side and client side as

a whole. This is insufficient since, especially for agile

development, the back-end code changes at the same time as

the front-end code. Hence, faults may occur because of invalid

data sent by the server, even if the UI is bug free. The

approach that we are suggesting overcomes this problem by

sanitizing the data sent from the server. This data is validated

before it is fed to the web application and displayed to the

user. Therefore, this approach will ensure that the server is

sending the right data in response to the client’s request. In the

remainder of this paper, we will first start by reviewing the

related approaches in section 2, sections 3 will present our

approach in more details with examples of how it can be

Continuous Integration Testing of Web

Applications by Sanitizing Program Input

Bouchaib Falah, Manal Hasri, and Sebastian Schwaiger

C

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Software Engineering (JSSE), February Edition, 2013

Volume 3, Issue 2

2

applied to web application integration testing. Section 4 will

draw a conclusion and section 5 present some possible future

work.

II. RELATED WORK

As for any software system, a web application testing

process defines a set of staged testing activities; each one is

considering a different testing level [1]. Currently, there is no

similar method available to sanitize input data arriving at the

client. However, other methods have been explored in order to

ensure the correct functioning of web applications by

performing unit testing, usually as the first activity, followed

by integration and ending by system and acceptance testing

[1]. These stages are defined as follow:

• Unit testing: units such as the web pages, scripting

modules, forms, applets, servlets, or other Web objects

are tested separately at this level

• Client page testing: consists of testing the end user

interface of the application

• Server testing: Typical results of server page execution

will be data retrieving / storing into a database, or

generation of client pages showing results of the

elaboration required by the user. Server testing should

ensure that these operations are performed correctly

• Integration testing: this phase considers sets of related

Web pages in order to assess how they work together, and

identify failures due to their coupling.

• System testing: its purpose is to allocate defects at the

level of the whole Web application. It is done through

black box testing and tries to identify failures in the

externally visible behaviour of the application.

• Acceptance testing

Several frameworks related to the testing areas as listed

above are the following:

1) PHPUnit

PHPUnit is an infrastructure that allows the programmer to

check whether code written in PHP behaves as expected

through performing a battery of tests, runnable code-fragments

that automatically test the correctness of parts (units) of the

software [3]. The results of these tests are reported with details

of the tests that failed. The main advantage of using such

infrastructure is that tests are fine-grained which allows

improving the overall design of the system [3]. However, this

infrastructure is only used for testing the back-end

functionality of a web application.

2) JsUnit

JsUnit is a unit testing framework for client-side code

written in JavaScript. It includes a platform for automating the

execution of tests on multiple browsers and machines under

different operating systems [4]. It provides instant feedback on

which test failed on which browser on which operating system

and creates logs for each test run. The automation of runs is

done through a Stand-alone Test [4]. When run, Stand-alone

Test starts each browser in turn and runs the specified test page

without any user interaction. In case of failure, a failure

message is displayed specifying which test failed in which

browser [4]. However, JsUnit is not appropriate for submitting

forms that interact with a web server. It is intended to test

purely client-side functionality. Hence, any form submission is

done through the use of mock objects (in this case, mock

forms) in order to create a new unit test.

3) Selenium

Selenium is a test tool that allows you to write auto- mated

user-interface tests for web applications in any programming

language against any HTTP website using any mainstream

browser [6]. It performs automated browser tasks by driving

the browser’s process through the operating system. Selenium

tests run directly in a browser instance, just as if a uses would

access them. These tests can be used for both acceptance

testing (by performing higher-level tests on the integrated

system instead of just testing each unit of the system

independently) and browser compatibility testing (by testing

the web application on different operating systems and

browsers) [6].

III. OUR APPROACH

A. Theory

In this paper, we are suggesting an approach that

complements already existing front-end and back-end testing

techniques. This is achieved by monitoring the traffic

retrieved from the server component in response to a client

request. Especially we focus on data retrieved during AJAX

[5] calls as those cannot be reliably tested with current

techniques (to our knowledge no front-end testing framework

can intercept AJAX calls). Fig 1 illustrates our approach

through AJAX data validator.

Fig. 1. AJAX Data Validator

3

B. Selenium User Extension

Our implementation consists of a plug-in for Selenium [2].

It validates the answers the server gives to AJAX requests

issued by the web page under test. It’s trivial with Selenium

to check JavaScript variables for their value, but the need to

check every single variable for its content can be

tremendously high. We’ll overcome that by comparing the

data retrieved before they are fed to the application’s request

handler.

We’re assuming that all data transfers between the client

and the server are serialized to JSON [6] format, thus

enabling us to easily parse and evaluate the packet’s content

on the client without the need to develop any additional

parsing component (current browsers already offer the

”JSON” [7] object for the purpose of (de-)serializing

JavaScript object in a safe manner). So, the tester simply

provides a serialized version of a template object to our plug-

in against which the data from the server is matched.

Finally, many web application servers can be configured to

automatically transmit JSON (instead of XML for example).

Multiple AJAX requests can be tested as every finished

request is put in a queue and matched against the first

template object contained in the testing queue.

For the sake of simplicity, our demo implementation

assumes the use of jQuery [8] in the web page under test. This

framework allows us to hook all server calls, both

synchronous and asynchronous in a way that is transparent by

the web page consuming the framework services.

By implementing the test code as a Selenium User

Extension [9], it is callable by Selenium test cases that may

already exist for the web page.

To capture the data sent by the server, a small script is

injected in the web page’s source code by calling JavaScript’s

eval() method from the Selenium Extension. Direct addition

of the callback handler via code execution in the context of

the user extension failed so far. Unfortunately jQuery handles

requests addressing the server the code was loaded from

different from requests that retrieve data from servers out of

the domain the calling script was loaded from. This is due to

the ”same origin policy” [10]. This security related feature

disables calls to server from a different domain to prevent

CSRF attacks (cross-site request forgery) [11]. To willingly

overcome this feature, jQuery supports a technique called

”JSONP” [12]. Here the AJAX call is not done with

POST but instead new code is loaded by inserting a ¡script¿

tag containing the request parameters in the ”src” attribute. It

also has to include the name of the callback that is called

in the user code. The code retrieved from the server will

then contain valid JavaScript code that calls the previously

specified callback function passing the actual payload data as

function argument. The reader must be aware that this method

may only be used for trustworthy servers as any JavaScript

code can be sent as response to the script request!

To finally activate the hooks (one for call to the server of

the same domain and one for other domains), a Selenium Test

method must be called to install the hook. This has to be done

once on every page refresh by the test suite to set-up the

hooks.

Selenium.prototype.doInjectAJAX

CallLogger=

function(locator, unused) {

var window =

selenium.browserbot.getCurrentWindow

();

if(typeof

window.seleniumAJAXTesterCache

== "undefined") {

window.seleniumAJAXTesterCac

he = []; window.eval(

"$(document).ajaxComplete

(" + "function(event,

xhr, options) {" +

"seleniumAJAXTesterC

ache." +

"push(xhr.response

Text);" +

"});");

window.eval(

"window.jsonpCallb

ack =" +

"function(data)

{" +

"seleniumAJAXTesterCac

he." +

"push(JSON.stringify

(data));" +

"}"

);

}

}

To activate the JSONP hook, jQuery’s normal JSONP

callback must be replaced with the one that was just added to

the web page’s code. This has to be done for every AJAX call

made, as the callback changes with every new request. The

location to do this is the method that takes the request:

$.ajax(). It is replaced with a custom

version:

// Store a reference to

the original method.

var originalMethod =

selenium.browserbot.

getCurrentWindow().$.ajax;

selenium.browserbot.getCurre

ntWindow().$. ajax =

function(url, settings)

4

{

settings.jsonpCallback =

"jsonpCallback";

return originalMethod(url,

settings);

}

To access the data stored in the request cache and match it

against templates specified in the test cases, another Selenium

User Extension is required. The matching method doesn’t

simply compare the string representation of the template and

retrieved object. It first parses the objects and then serializes

them again to ensure, that no white space characters distort the

matching process.

Selenium.prototype.asser

tAjaxCall =

function(locator,

templateObjectAsString) {

// Parse the template object

var templateObject =

JSON.parse(templateObject

AsString);

// Get the oldest result of

// an AJAX query

var retrievedObjectAsString =

selenium.browserbot.getCurre

ntWindow().

seleniumAJAXTesterCache[0];

// Remove the retrieved

object

// from the AJAX data cache

selenium.browserbot.getCurren

tWindow().

seleniumAJAXTesterCache.shift();

// Parse the retrieved

object

var retrievedObject

= JSON.

parse(retrievedObject

AsString);

// Serialize the template...

var stringifiedObject1 =

JSON.stringify(templateObject);

// ...and retrieved object

var stringifiedObject2

=

JSON.stringify(retrie

vedObject);

//check objects for equality

Assert.matches(

stringifiedObject1,

stringifiedObject2);

};

Fig. 2 shows the test case as it is shown within the

Selenium IDE. First, the data gathering script is injected in

the web page by calling the ”injectAJAXCallLogger” user

extension. Then an AJAX call is triggered (in the demo by

virtually clicking on a button with id = btnSync. As the call is

asynchronous, we have to have for it to complete. In the

current version, this is simply achieved with a timer, more

sophisticated version can perhaps directly monitor the

browser’s AJAX engine. The condition that is waited for (not

completely visible in the picture) is:

selenium.browserbot.getCurrentWindow().$.active ==0

Fig. 2. The Selenium test case

Finally, the retrieved data is compared against a template

object passed to the validation code by calling

”assertAjaxCall”. An overview of all control and data flows

mentioned in this section is depicted in Fig 3.

C. Example Web Pages under Test

When testing web pages, one essential distinction must be

made: is the page requesting data via AJAX from the server it

was load or from a different domain. According to the

situation, different data gathering methods must be used.

1) Same origin AJAX request: The JavaScript snippet that

requests data from a web server can simply use

jQuery’s $.ajax() functionality with default

parameters:

function

testSameDomainAjax() {

$.ajax("data.php", {

success:

function(data,

textStatus,

jqXHR) {

data = JSON.parse(data);

//work with the data

$("#a").text(data.a);

$("#b").text(data.b);

}

});

}

The PHP script, that is queried for data is the following:

<?php

$arr = array (’a’=>1,’b’=>2);

echo json_encode($arr);

?>

5

2) Cross domain AJAX request Requesting data from a

different domain requires more effort. A callback

function has to specify that it will be called when the

data has been retrieved.

function testGeonames() {

$.ajax("http://api.geona

mes.org/" +

"countrySubdivisionJSON?" +

"lat=33.536511&" +

"lng=-

4.746094&username=...",

{

dataType: ’jsonp’,

success:

function(data,
textStatus, jqXHR){

//work with the

data

$("#countryName").text

(
data.countryName);

$("#countryCode").text

(data.countryCode);

}

});

}

IV. CONCLUSION

Software testing is a crucial element of the software

development process. Testing is an intellectually challenging

activity that needs a lot of planning before we start testing. It

occurs near the end of the software development life cycle.

Thus, it is often rushed and frequently not done well. In

addition, it is a very costly and time consuming activity.

Web applications are becoming the most desired way to do

shopping. So, in order to satisfy the customer with an error

free application, it is fairly important to perform integration

testing as this will remove the bad experience from customers.

Many effort and experiences are required to understand the

testing techniques to develop a web application. Therefore, a

significant growth of the demand of Web-based applications

has been recorded and documented, especially to serve

business purposes.

In this work, we presented a neat plug-in for Selenium to

hook every AJAX call made by the web application under test

to verify requested data before it is processed by the

application. This helps to narrow down the location of a

fault (whether it is situated in server- or client-side code).

This is especially important for agile teams that work on both

client and server- side code in parallel.

In a nutshell, our approach helps these teams fulfilling the

requirement of continuous integration testing their artifact.

Beyond that, the developed approach can be used to for

regression testing, too. For example, every new product

version can be tested if its output still complies with the

specification and the API documentation (e.g. regression

testing). Furthermore, the front-end can directly work with a

live back- end system without the need to develop mock

objects, as the produced data is verified before it is fed to the

JavaScript code reducing the effort required set up an

application’s testing environment.

Fig. 3. Control Flow and Data Flow

http://api.geonames.org/
http://api.geonames.org/

6

V. FUTURE WORK

Our prototype currently can only test for the identity of two

objects. It would be a valuable improvement if we could test

the data for compliance to a range of constraints (data type,

value range) instead of just the simple identity. An example for

JSON data, that cannot be verified yet, is a call to the Twitter

API. Every result returns data that is unique to the request.

Therefore, the static matching cannot be used and a more

sophisticated technique must be developed.

$.ajax("http://search.

twitter.com/" +

"search.json?callback=?&

rpp=5&q=" +

"from:ladygaga",

{

dataType:

’jsonp’,

success:

function(data

,

textStatus, jqXHR) {

//work with the data

}

}

);

By adding the ability to compare the objects using regular

expressions, changing parameters in every request can be

filtered out or validated. The most sophisticated approach on

top of the current work would be to specify not a template

object in the test case but metadata that describe the attributes

of the server’s response (like the count, the type and the names

of the expected parameters allowing in-depth inspection and

validation of the data. This can parse all kinds of responses

where regular expressions are not powerful enough.

Another way to improve our work is through testing our

technique on real-time search engines in order to evaluate its

usefulness in the assessment of the site quality. Our technique

is expected to allow a deep insight in the internal functioning

of the Web applications, as well as evaluating the accuracy of

the results received by the end-users. Conducting such

experiments would be a great improvement to our work, since

it will allow not only testing the effectiveness of our technique,

but also how complementary it is to all other existing

techniques.

REFERENCES

[1] G. A. Di Lucca and A. R. Fasolino. (2006, Dec.) Testing web-
based applications: The state of the art and future trends. [Online].
Available: www.sciencedirect.com

[2] Selenium. (2012) What is Selenium? [Online] .
Available: ht tp: / /seleniumhq.org/

[3] S. Bergmann. (2012, Dec.) PHPUnit Manual. [Online]. Available:
http://www.phpunit.de/manual/current/en/phpunit-book.pdf

[4] J. Schaible. (2007, Dec.) JsUnit Manual. [Online]. Available:

http://jsunit.berlios.de/index.html
[5] Refsnes Data. (2012) AJAX Tutorial. [Online]. Available:

http://www.w3schools.com/ajax/default.asp

[6] (2012) JSON Tutorial. [Online]. Available: http://www.w3schools.

com/json/default.asp
[7] Mozilla Developer Network. (2012, Aug.) JSON. [Online]. Available:

https://developer.mozilla.org/en-US/docs/JSON
[8] jQuery Foundation. (2012) jQuery is a new kind of JavaScript Library.

[Online]. Available: http://jquery.com/
[9] Selenium. (2012) User-Extensions. [Online]. Available:

http://seleniumhq.org/docs/08 user extensions.html
[10] Mozilla Developer Network. (2011, Nov.) Same origin policy

for JavaScript. [Online]. Available: https://developer.mozilla.org/en-
US/ docs/Same origin policy for JavaScript

[11] J. Blatz. (2007, Dec.) CSRF: Attack and Defense. [On-
line]. Available: http://www.mcafee.com/us/resources/white-
papers/ wp-csrf- attack-defense.pdf

[12] K. Simpson. (2012, Nov.) Defining Safer JSON-P. [Online]. Available:
http://json-p.org/

Dr. Bouchaib Falah: Offering more than 20 years of combined experience

developing and implementing computer science and technical/math

curriculum for different colleges and universities as well as web designs for

multimillion-dollar organizations in USA and researcher in different projects,

Dr. Bouchaib Falah is currently an Assistant Professor at Al Akhawayn

University, teaching graduate and undergraduate software engineering

courses, School of Science and Engineering. Beside teaching high school

level math in Morocco and college mathematics and computer science at

Harrisburg Area Community College in Pennsylvania, Suny Orange

Community College in New York, Pennsylvania State University in

Pennsylvania, Central Pennsylvania College in Pennsylvania, Concordia

College in Minnesota, and North Dakota State University in North Dakota,

Dr; Bouchaib Falah has an extensive industrial experience with Agri-ImaGIS,

Synertich, and Commonwealth of Pennsylvania Department of Environmental

Protection. He holds a doctoral degree in Software Engineering from North

Dakota State University, in 2011, a master degree in Computer Science from

Shippensburg University, in 2001, and a bachelor degree/teaching certificate

from Ecole Normale Superiere in Morocco, in 1990.

http://search.twitter.com/
http://search.twitter.com/
http://www.sciencedirect.com/
http://www.phpunit.de/manual/current/en/phpunit-book.pdf
http://jsunit.berlios.de/index.html
http://www.w3schools.com/ajax/default.asp
http://www.w3schools/
http://jquery.com/
http://www.mcafee.com/us/resources/white-papers/
http://www.mcafee.com/us/resources/white-papers/
http://json-p.org/

