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Abstract—The number of changing pixel rate (NPCR) and the 

unified averaged changed intensity (UACI) are two most common 

quantities used to evaluate the strength of image encryption 

algorithms/ciphers with respect to differential attacks. 

Conventionally, a high NPCR/UACI score is usually interpreted 

as a high resistance to differential attacks.  However, it is not clear 

how high NPCR/UACI is such that the image cipher indeed has a 

high security level. In this paper, we approach this problem by 

establishing a mathematical model for ideally encrypted images 

and then derive expectations and variances of NPCR and UACI 

under this model. Further, these theoretical values are used to 

form statistical hypothesis NPCR and UACI tests. Critical values 

of tests are consequently derived and calculated both symbolically 

and numerically. As a result, the question of whether a given 

NPCR/UACI score is sufficiently high such that it is not 

discernible from ideally encrypted images is answered by 

comparing actual NPCR/UACI scores with corresponding critical 

values. Experimental results using the NPCR and UACI 

randomness tests show that many existing image encryption 

methods are actually not as good as they are purported, although 

some methods do pass these randomness tests.   

 
Index Terms—Differential Attacks, Randomness Test, Image 

Encryption, UACI, NPCR  

 

I. INTRODUCTION 

IFFERNTIAL attack/cryptanalysis is a general name of 

attacks/cryptanalysis applicable primarily to block ciphers 

working on binary sequences. The discovery of differential 

cryptanalysis is usually attributed to Eli Biham and Adi Shamir, 

who published papers [1, 2] about this type of attacks to various 

ciphers, including a theoretical weakness of the Data 

Encryption Standard (DES) [3]. Since then, the differential 

attack becomes a common attack that has to be considered 

during the cipher design.  
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In binary sequence encryption, the cipher resistance to 

differential attacks is normally analyzed directly via calculating 

the independence matrix [4] between any two output bits and 

the dependence matrix [4] between the input bits and output 

bits. However, unlike binary sequence encryption, image 

encryption [5-14] is a relatively new area with distinctive 

characteristics including 1) it is a type of two-dimensional data 

with high information redundancy [15]; and 2) it usually 

contains of a large number of pixels, each of which is composed 

of a number of binary bits. All these properties make the 

conventional ciphers designed for binary data inappropriate for 

image data [15]. For the same reason, randomness tests for 

binary data are also not appropriate for image encryption 

methods/ciphers. 

In image encryption, the cipher resistance to differential 

attacks is commonly analyzed via the NPCR and UACI tests 

[5-14]. The NPCR and UACI are designed to test the number of 

changing pixels and the number of averaged changed intensity 

between ciphertext images, respectively, when the difference 

between plaintext images is subtle (usually a single pixel). 

Although these two tests are compactly defined and are easy to 

calculate, test scores are difficult to interpret in the sense of 

whether the performance is good enough. For example, the 

upper-bound of the NPCR score is 100%, and thus it is believed 

that the NPCR score of a secure cipher should be very close to 

this upper-bound. However, the question is how close is ‘close’? 

A NPCR score of 99% is close or a score of 99.9% or neither of 

them is close enough. Therefore, it is trivial to answer the 

quantitative question that what are the NPCR and UACI scores 

for one image encryption algorithm/cipher, without knowing 

the answer of the qualitative question that whether this 

algorithm/cipher is able to generate secure enough ciphertext 

with resistance to differential attacks.  

Inspired by the FIPS 140-1 [16] and its successor FIPS 140-2 

[17] randomness test sets for binary ciphers, we believed that 

randomness tests giving qualitative results rather than pure 

quantitative results should be derived for image encryption as 

well. In this paper, we focus on the NPCR and UACI tests and 

give our solutions to answer the qualitative question about 

NPCR and UACI tests for image encryption. 

The remainder of the paper is organized as follows: Section 

II gives the mathematical model of an ideally encrypted image 

and derives the expectations, variances and hypothesis tests of 

NPCR and UACI; Section III gives numerical results of these 

expectations, variances and lookup tables of critical values for 

NPCR and UACI Randomness Tests  
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hypothesis tests; Section IV shows results of the proposed 

randomness tests of NPCR and UACI for a number of 

published image encryption methods; Section V concludes the 

paper and discusses our future work 

II. MATHEMATICAL DERIVATIONS OF  

NPCR AND UACI RANDOMNESS TESTS 

A. NPCR and UACI Definitions 

For our best knowledge, NPCR and UACI are first shown in 

2004 [5, 18], both of which point to Yaobin Mao and Guanrong 

Chen. Since then NPCR and UACI become two widely used 

security analyses in the image encryption community for 

differential attacks.  

Suppose ciphertext images before and after one pixel change 

in a plaintext image are    and   , respectively; the pixel value 

at grid       in    and    are denoted as         and        ; 
and a bipolar array   is defined in Eqn. (1). Then the NPCR 

and UACI can be mathematically defined by Eqns. (2) and (3), 

respectively, where symbol   denotes the total number pixels 

in the ciphertext, symbol   denotes the largest supported pixel 

value compatible with the ciphertext image format, and     
denotes the absolute value function. 

        
                     

                    
  (1)  

                 
      

 
   

      (2)  

                
                 

   
   

      (3)  

It is clear that NPCR concentrates on the absolute number of 

pixels which changes value in differential attacks, while the 

UACI focuses on the averaged difference between two paired 

ciphertext images.  

The range of NPCR is      . When           , it 

implies that all pixels in    remain the same values as in   . 

When           , it implies that  all pixel values in    are 

changed compared to those in   . In other words, it is very 

difficult to establish relationships between this pair of 

ciphertext image    and   . However,            rarely 

happens, because even two independently generated true 

random images fail to achieve this NPCR maximum with a high 

possibility, especially when the image size is fairly large 

compared to  .  

The range of UACI is clearly       as well, but it is not 

obvious that what a desired UACI for two ideally encrypted 

images is. Fortunately, these results will be given in next 

sections with the form of expectations and variances.  

B. Ideally Encrypted Image 

Before start to derive the interested statistics about NPCR 

and UACI for ideally encrypted images, the term of ‘ideally 

encrypted image’ has to be clarified first. Although it may be 

considered differently in other literature, in this paper, we 

consider an ideally encrypted image is some image that cannot 

be discernible from a true random image. More specifically,  

Definition 1. Ideally Encrypted Image 

An ideally encrypted image   is a random field at size of 

 -by- , where for any fixed integer         and        , 
the random variable of pixel value        identically and 

independently (i.i.d) follows a discrete uniform distribution on 

0 to  ’s largest supported integer  , i.e.         ,        , 
                     .  
 

It is noticeable that the above definition is plausible in the 

context of image encryption, where the aim of encryption is to 

obtain random-like ciphertext images such that attackers cannot 

figure out the internal relations between plaintext and 

ciphertext. In fact, other security analyses [5-14], e.g. 

histogram analysis, entropy analysis and autocorrelation 

analysis, are all designed to test whether or not a ciphertext 

image is random-like. 

For any pixel at any location in an ideally encrypted image  , 
its value is equally likely to be an arbitrary intensity level   in 

     , namely                     . In order to save 

notations, the spatial index       can be expressed by an 

absolutely index   as Eqn. (4) shows. As a result, we have 

            . 

           (4)  

  

C.  NPCR Test  

In this section, the expectation and the variance of NPCR for 

two ideally encrypted images are calculated first and then an 

 -level hypothesis test is derived based on these two statistics. 

For simplicity,  

 

Theorem I. For the  th pixels (  [1,MN]) in two ideally 

encrypted images defined in Definition 1, define a random 

variable  

   
                 

                
  

Then this random variable   follows a Bernoulli distribution 

with the parameter          . 
Proof.  Using the assumption of independence and       , 

it is easy to see,  

                          
 

                                    

 

   

 

 

                           

 

   

 

          
Consequently,                          . 
Therefore,             .                                                        ∎ 

 

Moreover, if the total number of pixels whose          is 

denoted as a random variable  , then   has the Binomial 

distribution as Theorem II states.  



Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), April Edition, 2011 

33 

Theorem II. The random variable          
    defined on 

two ideally encrypted images follows a Binomial distribution 

       , where          . 
 

Proof.  Using the conclusion of Theorem I and i.i.d property 

between pixels, it is clear that  

         
  

 
  

 

   
 
 

 
 

   
 
    

 

which is the Binomial distribution        .                           ∎ 

 

 Therefore, the expectation and the variance of   are 

explicitly defined as Eqns. (5) and (6), respectively.  

                  (5)  

  
                        (6)  

It is clear that this random variable   is a scaled version of the 

NPCR score, where                            . 

Therefore,                 , if two test ciphertext images 

   and    of size  -by-  are ideally encrypted. That is 

            
 

  
   

  

 
  

 

   
 
 

 
 

   
 
    

 (7)  

                 (8)  

  
  

  
 

     
 

 

        
 (9)  

As a result, the following statistical test can be used as a test of 

NPCR for image encryption: 

 

Definition 2. Randomness Test for NPCR 

Suppose    and    are two test ciphertext images at the size 

 -by-  , the hypotheses with α-level significance for 

        , then, are 

 
       

        
       

        
  

where we reject   , when            , the critical value 

of the NPCR test; otherwise we accept   . The critical 

value    is defined in Eqn. (10), where        is the inverse 

cumulative density function (CDF) of the standard Normal 

distribution       . 
  

  
       

        

(10)  

            
 

  
        

D. UACI Test for Ideally Encrypted Image 

Similarly to NPCR test, the UACI test derived in this section 

is also with respect to two ideally encrypted images. 

Consider a new random field  , which is the absolute 

difference between    and    as Eqn. (11) shows. Since pixel 

values in    and    are both i.i.d, pixels in   is also i.i.d with 

some unknown distribution.   

          (11)  

Let                     , then this random variable 

for the averaged changed intensity for one pixel location in two 

ideally encrypted images follows a discrete distribution showed 

in Theorem III. 

  

Theorem III. If                     , which is the 

changed intensity of two ideally encrypted images at location  ,  

then  

         
       

               
      

      

           
 

 

Proof.  From Theorem I, it is clear that when     

                        
When           ,  
                           

                                       
Calculate                   using Definition 1, we obtain 

                   

 

                           

 

   

 

 

                           

 

   

 

                 

Similarly,                                 . 

Thus,                        .                            ∎ 

Theorem III gives the probability density function (PDF) of 

the random variable   and the i.i.d distribution in the random 

field   as well. In addition, the mean and the variance of   can 

also be obtained as Eqns. (12) and (13) show. 

                    
 

   

 
      

    
 (12)  

                  
                     

 

   

   
  

(13)    
      

 
  

      

    
 
 

 

  
               

        
 

 

Let quantity                   
      , then this   is 

nothing but the mean value of  , as Eqn. (14) shows. Moreover 

the relationship between   and UACI is             , 

which implies   is a scaled version of the UACI score. 

 

       

  

   

    (14)  
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Theorem IV. If                   
       is the scaled 

version of UACI between two ideally encrypted images    and 

   whose plaintext images are slightly different, then 

         
      

Proof.   

The Central Limit Theorem (CLT) tells that as long as the 

sample size   is large enough, the sample mean of any i.i.d 

distributed sample with an arbitrary PDF with an average   and 

a finite    is approximately a Gaussian          . In our case, 

  is the number of pixels and is usually much large than 100, 

which is the sample size believed the CLT can be applied [19, 

20]. 

Because   ,      are i.i.d distributed with PDF specified in 

Theorem III. Therefore,           
   where    and   

  are 

shown in Eqns.(15) and (16), respectively.                            ∎ 

      
      

    
 (15)  

  
  

  
 

  
 
               

          
 (16)  

 

As a result, we obtain the expectation and the variance for the 

UACI test as follows: 

                     (17)  

  
    

     
              

           
 (18)  

 

Since the reference results have been derived from the 

ideally encrypted image, the following statistical test can be 

used to test UACI: 

 

Definition 3. Randomness Test for UACI 

Suppose    and    are two test ciphertext images at the size 

 -by- , then the hypotheses with α-level significance for 

        , then, are 

 
       

        
       

        
  

where we reject   , when             
     

   , the 

critical values of the NPCR test; otherwise we accept   . The 

critical value   
   and   

   are defined in Eqns. (19) and (20), 

respectively, where        is the inverse CDF of the standard 

Normal distribution       . 
 

  
        

          (19)  

  
        

          (20)  

  

III. NUMERICAL RESULTS FOR NPCR AND UACI 

RANDOMNESS TESTS 

A. Numerical Results for NPCR 

As the previous section derived, the expectation, the variance 

and the PDF of NPCR statistic have already been shown in 

Eqns. (5)-(7). The distribution of the NPCR random variable 

         for two true random images follows a Binomial 

distribution        . When            and      , 

this distribution is shown Fig. 1, where figure (b) is an enlarged 

version for the peak in figure (a). From Fig. 1, it is clear that 

         has Gaussian-like distribution. Indeed, a Binomial 

distribution can be approximated as a Gaussian distribution 

whenever the condition                    is 

satisfied [21]. 

  
(a) PDF NPCR    (b) Zoom-in    

Fig. 1.  PDF of NPCR for          and       

  

Numerical results of NPCR critical values with respect to 

different parameter combinations are given in Table I. From 

Eqns. (5) and (6), it is noticeable that    is a constant and    

is proportional to      , respectively, when   is fixed. 

Therefore, as the     increases four times,     remains 

unchanged, while     deceases a half.  

In Table I,      
 ,      

 , and       
 denote the critical values 

to reject the null hypothesis with respect to the significance 

level       ,        and        . This means that if 

        , the NPCR test for two paired ciphertext images    

and   , less than   
 , then    and    are NOT randomly-like 

with an  -level of significance. In other words, the possibility 

to say ‘    and    are not random-like’, when they are 

random-like, is α, which is a small quantity. 

B. Numerical Results for UACI 

Table II shows related numerical results for UACI. In this 

table, it is noticeable that    is independent of    . Because 

               , which is a single variable function 

about   (see Eqn. (17)), the largest allowed integer related to 

the image format. Meanwhile,    halves its value as    

increases in the table. This is because    is proportional to 

     , whenever    increases four times,     halves itself.  
Unlike the critical value   

  for NPCR test, the critical value 

  
 for UACI test is composed of two parts, the left value   

   

and the right value   
  . All these values are listed in Table II. 

For any tested         , if it is out of the acceptance 

interval    
     

   , we reject the null hypothesis and say the 

tested ciphertext images    and    are NOT random-like. 

Again, this assertion maybe wrong, but the possibility to make 

a mistake is only  , which is a small quantity.  
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TABLE I. NUMERICAL RESULTS FOR NPCR RANDOMNESS TEST  

 

 

Binary Image:     

 

Gray Image:       

               
       

        
             

       
        

  

      50.0000% 0.7813% 48.7150% 48.1825% 47.5858% 99.6094% 0.0975% 99.4491% 99.3826% 99.3082% 

        50.0000% 0.3906% 49.3575% 49.0913% 48.7929% 99.6094% 0.0487% 99.5292% 99.4960% 99.4588% 

        50.0000% 0.1953% 49.6787% 49.5456% 49.3964% 99.6094% 0.0244% 99.5693% 99.5527% 99.5341% 

        50.0000% 0.0977% 49.8394% 49.7728% 49.6982% 99.6094% 0.0122% 99.5893% 99.5810% 99.5717% 

          50.0000% 0.0488% 49.9197% 49.8864% 49.8491% 99.6094% 0.0061% 99.5994% 99.5952% 99.5906% 

 
 

 

TABLE II. NUMERICAL RESULTS FOR UACI RANDOMNESS TEST  

 

 

Binary Image:     

 

Gray Image:       

          
     
  

     
    

     
  

     
    

      
  

      
          

     
  

     
    

     
  

     
    

      
  

      
    

      50.0000% 0.7813% 
48.4688% 47.9876% 47.4293% 

33.4635% 0.3697% 
32.7389% 32.5112% 32.2469% 

51.5312% 52.0124% 52.5707% 34.1882% 34.4159% 34.6802% 

        50.0000% 0.3906% 
49.2344% 48.9938% 48.7146% 

33.4635% 0.1849% 
33.1012% 32.9874% 32.8552% 

50.7656% 51.0062% 51.2854% 33.8259% 33.9397% 34.0718% 

        50.0000% 0.1953% 
49.6172% 49.4969% 49.3573% 

33.4635% 0.0924% 
33.2824% 33.2255% 33.1594% 

50.3828% 50.5031% 50.6427% 33.6447% 33.7016% 33.7677% 

        50.0000% 0.0977% 
49.8086% 49.7485% 49.6787% 

33.4635% 0.0462% 
33.3730% 33.3445% 33.3115% 

50.1914% 50.2515% 50.3213% 33.5541% 33.5826% 33.6156% 

          50.0000% 0.0488% 
49.9043% 49.8742% 49.8393% 

33.4635% 0.0231% 
33.4183% 33.4040% 33.3875% 

50.0957% 50.1258% 50.1607% 33.5088% 33.5231% 33.5396% 

 

TABLE III. COMPARISON OF THEORETICAL VALUES AND EXPERIMENTAL VALUES  

 Binary Image:     

 NPCR % UACI % 

                                

      50.0000000000 0.7813000000 49.9984221458 0.7838076127 50.0000000000 0.7812500000 49.9984221458 0.7838076127 

        50.0000000000 0.3906000000 49.9944293455 0.3913540553 50.0000000000 0.3906250000 49.9944293455 0.3913540553 

        50.0000000000 0.1953000000 49.9965943224 0.1956158262 50.0000000000 0.1953125000 49.9965943224 0.1956158262 

        50.0000000000 0.0977000000 49.9988945723 0.0970774641 50.0000000000 0.0976562500 49.9988945723 0.0970774641 

          50.0000000000 0.0488000000 50.0011780387 0.0486855663 50.0000000000 0.0488281250 50.0011780387 0.0486855663 

 

 Gray Image:       

 NPCR % UACI % 

                                

      99.6094000000 0.0975000000 99.6092433089 0.0989692547 33.4635416667 0.3697318566 33.4462493563 0.3741631181 

        99.6094000000 0.0487000000 99.6097590990 0.0486867022 33.4635416667 0.1848659283 33.4537322188 0.1858105271 

        99.6094000000 0.0244000000 99.6096636839 0.0244907014 33.4635416667 0.0924329642 33.4595629123 0.0919732060 

        99.6094000000 0.0122000000 99.6095651442 0.0121198368 33.4635416667 0.0462164821 33.4654786002 0.0453526000 

          99.6094000000 0.0061000000 99.6096801758 0.0061338739 33.4635416667 0.0231082410 33.4640661364 0.0231559551 
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TABLE IV. NPCR RANDOMNESS TEST FOR IMAGE ENCRYPTION  

Tested Image Size  -by-  Theoretically NPCR Critical Value 

256-by-256      
  99.5693%      

  99.5527%       
 =99.5341% 

Image Encryption Methods Reported Value(s) 
NPCR Test Results 

0.05-level 0.01-level 0.001-level 

Zhang 2005 [7] 98.669% Fail Fail Fail 

Zhu 2006 [8]  

(reported in [9]) 

99.26% Fail Fail Fail 

99.45% Fail Fail Fail 

99.13% Fail Fail Fail 

Behnia 2008 [6] 41.962% Fail Fail Fail 

Huang 2009 [9] 

99.42% Fail Fail Fail 

99.54% Fail Fail Pass 

99.60% Pass Pass Pass 

Liao 2010 [10] 

99.66% Pass Pass Pass 

99.65% Pass Pass Pass 

99.63% Pass Pass Pass 

Zhang 2010 [11] 99.61% Pass Pass Pass 

Kumar 2011 [12] 99.72% Pass Pass Pass 

 

Tested Image Size  -by-  Theoretically NPCR Critical Value 

512-by-512      
  99.5893%      

  99.5810%       
 =99.5717% 

Image Encryption Methods Reported Value(s) 
NPCR Test Results 

0.05-level 0.01-level 0.001-level 

Chen 2004 [5] 50.22% Fail Fail Fail 

Lian 2005 [13]  

(reported in [14]) 
99.5914% Pass Pass Pass 

Zhu 2010 [14] 99.6273041% Pass Pass Pass 

 

 

TABLE V. UACI RANDOMNESS TEST FOR IMAGE ENCRYPTION  

Tested Image Size  -by-  Theoretically UACI Critical Values 

256-by-256 
     
   33.2824%      

   33.2255%       
  =33.1594% 

     
   33.6447%      

   33.7016%       
   33.7677% 

Image Encryption Methods Reported Value(s) 
NPCR Test Results 

0.05-level 0.01-level 0.001-level 

Zhang 2005 [7] 33.362% Pass Pass Pass 

Zhu 2006 [8]  

(reported in [9]) 

21.41% Fail Fail Fail 

23.42% Fail Fail Fail 

15.08% Fail Fail Fail 

Behnia 2008 [6] 33.25% Fail Pass Pass 

Huang 2009 [9] 

27.78% Fail Fail Fail 

27.66% Fail Fail Fail 

24.94% Fail Fail Fail 

Liao 2010 [10] 

33.20% Fail Fail Pass 

33.31% Pass Pass Pass 

34.61% Fail Fail Fail 

Zhang 2010 [11] 38% Fail Fail Fail 

Kumar 2011 [12] 32.821% Fail Fail Fail 

 

Tested Image Size  -by-  

512-by-512 

Theoretically UACI Critical Values 

     
   33.3730%      

   33.3445%       
  =33.3115% 

     
   33.5541%      

   33.5826%       
   33.6156% 

Image Encryption Methods Reported Value(s) 
NPCR Test Results 

0.05-level 0.01-level 0.001-level 

Chen 2004 [5] 25.21% Fail Fail Fail 

Lian 2005 [13]  

(reported in [14]) 
33.3359% Pass Pass Pass 

Zhu 2010 [14] 33.4815979% Pass Pass Pass 
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IV. SIMULATION RESULTS 

In this section, two types of simulations are presented. First, 

the Monte Carlo simulation is applied to generate interested 

statistics of          and         , where    and    are 

images of size  -by-  generated by pseudo random number 

generator which is built-in function in MATLAB. Secondly, 

the designed NPCR and UACI tests are applied to various 

existing image encryption methods/ciphers. 

A. Monte Carlo Simulation 

In order to estimate the interested statistics, the sample mean 

and variance defined in Eqns. (21) and (22) are used, where   

denotes the interested statistics and   is the number of 

observations. Recall the Law of Large Numbers (LLN), which 

states that the sample mean    converges to the true mean   , as 

   .  Meanwhile, the sample variance is an unbiased and 

consistent estimator of the true variance, which implies that 

     
 , as    . Therefore, these two quantities can be 

used to estimate our interested statistics, including   ,     , 

   and     under different   values.  

      

 

   

   
(21)  

           
 

 

   

       
(22)  

Simulation results of these interested statistics are shown in 

Table III. It is worth to note that each estimated statistics in 

Table III (marked with a cap), it is calculated from 10,000 pairs 

of    and    that are randomly generated images. More 

specifically, the estimated statistics    ,    ,     and     are 

obtained via Eqns. (23) –(26), respectively.  

         
    

  

     

   

       
(23)  

   
        

    
        

     

   

      (24)  

         
    

  

     

   

       (25)  

   
        

    
        

     

   

      
(26)  

Fig. 2 shows the difference between the theoretical values 

and the experimental values. It is noticeable that such 

differences are subtle. More specifically, they are of or below 

the level of     . Therefore, the provided reference Tables I 

and II are reliable.  

B. Randomness Test for Image Encryption 

In this section, the reported results of differential attacks 

from various image encryption papers are collected and 

compared with critical values of NPCR and UACI tests.  

  
(a) (b) 

  
(c) (d) 

 

 

Fig. 2.  Difference between the estimated values and experimental values 

(a)          and          when    ; (b)          and          
when    ; (c)          and          when      ; (d)          and 

         when      . 

These image encryption methods include Zhang’s method  

based on chaotic maps (Zhang 2005) [7], Zhu’s method based 

on Chen’s chaotic system (Zhu 2006) [8], Huang’s method 

using multiple chaotic systems (Huang 2009) [9], Behnia’s 

method using a mixture of chaotic maps (Behnia 2008) [6], 

Liao’s algorithm based on self-adaptive wave transmission 

(Liao 2010) [10], Zhang’s method using DNA addition with 

chaotic maps (Zhang 2010) [11], Kumar’s method using 

extended substitution-diffusion network with chaos (Kumar 

2011) [12], Chen’s encryption scheme using the 3D cat map 

(Chen 2004) [5], Lian’s block cipher using chaotic standard 

map (Lian 2005) [13], and Zhu’s method using a bit-level 

permutation (Zhu 2010) [14]. The NPCR and UACI scores are 

obtained directly from papers of related methods without any 

modification.   

Using reference Table I and II, these reported NPCR and 

UACI scores are evaluated to see whether the two test 

ciphertext images are random-like. In order to simplify the 

comparison, we listed these results in the chronological order 

and sorted with respect to the test images size, which 

determines the critical value(s) of the test. The NPCR and 

UACI test results are shown in Table IV and Table V, 

respectively.  

From Table IV, it is noticeable that when the test image size 

is 256-by-256, although most NPCR scores are not far different 

from each other and close to 100%, they do have significant 

difference in the point view of statistics. Many earlier methods 

(before 2010) fail the test, but recent methods have better 

NPCR test results.  Same phenomenon is also observed when 

the test image size is 512-by-512. 

From Table V, it is clear that most of the test image 

encryption methods fail the UACI test, with an either too low or 
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too high UACI score.  

Considering these results in Table IV and Table V, ‘Lian 

2005’ [13] and ‘Zhu 2010’ [14] are two best ones among the 

test ten image encryption algorithms, because they passed the 

both the NPCR and UACI randomness tests. Although ‘Zhu 

2010’ has slightly higher NPCR and UACI scores than those of 

‘Lian 2005’, it does not mean that ‘Zhu 2010’ is more secure 

than ‘Lian 2005’, because their test scores are not statistically 

different. This conclusion also points out a common mistake in 

the image encryption literature: some author claims his/her 

method is better than some others’ by simply comparing some 

test scores. For example, ‘Lian 2005’ [13] is used as a reference 

algorithm for comparing the NPCR and UACI scores with ‘Zhu 

2010’ in [14], where the author claims that ‘Zhu 2010’ is better 

than ‘Lian 2005’ by simply comparing test scores. However, 

test results of ‘Zhu 2010’ and ‘Lian 2005’ in Tables IV and V 

show that they do not have significant difference. This implies 

that maybe both algorithms are able to generate random-like 

ciphertext image and thus the different test scores are purely 

caused by the stochastic process.  

V. CONCLUSION 

In this paper, we discussed the NPCR and UACI randomness 

tests for image encryption. Unlike the conventional usage of 

NPCR and UACI for calculating scores, we consider both 

scores as random variables under the ideally encrypted image 

model and derive their expectations and variances. Meanwhile, 

hypothesis tests with an α-level of significance are designed for 

NPCR and UACI tests respectively.  With these two hypothesis 

tests, it is easy to accept or reject the null hypothesis that test 

ciphertext images are random-like. Therefore, such tests 

provide qualitatively results rather than quantitatively results 

for image encryption.  

Experimental results show the estimated expectations and 

variance of NPCR and UACI are very close to the theoretical 

values, which justify the validity of theoretical values. Further, 

the proposed NPCR and UACI randomness tests are also 

applied to various image encryption algorithms. Test results 

show that many of these tested algorithms are problematic or at 

least not statistically random-like. Meanwhile, these results 

also showed that the conventionally quantitative analysis 

methodology for image encryption is questionable. Because 

these test scores, e.g. NPCR or UACI, are random variables 

dependent on parameters such as the image size and the format 

of the image rather than static values. Purely comparing two 

NPCR/UACI scores for two algorithms without noting these 

parameters is not fair. For example, a NPCR score based on 

gray images is 99.5710%, which is very close to the expectation 

99.6094% (see Table I), but when the test image size is 

512-by-512, this score is out of 99.9% confidence interval 

(99.5717%, 100%] of the NPCR score. This conclusion means 

that test ciphertext images do not follow the relations between 

two ideally encrypted images and thus it may be vulnerable to 

differential attacks. Moreover, the significance level   tells that 

the chance of making a wrong conclusion is one out of a 

thousand.  

On the other hand, judging two encryption methods by 

comparing their test scores quantitatively is also questionable. 

In other words, better than some poor method(s)/algorithm(s) is 

not sufficient to say a method is good. Because it is still unclear 

whether this method is able to generate ciphertext images as 

random-like as those ideally encrypted images, although its test 

score is better than some other(s). Unless comparing test 

score(s) with theoretical values like those derived in this paper, 

it is hard to know whether a method is good and how good it is.    
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